0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

设计直流超快充电桩方案必知的几种常见拓扑

安森美 来源:安森美 作者:安森美 2024-03-05 09:53 次阅读

充电时间是消费者和企业评估购买电动汽车的一个主要考虑因素,为了缩短充电时间,业界正在转向直流快速充电桩(DCFC)和超快速充电桩。超快速DCFC和超快速充电桩绕过了电动汽⻋的车载充电机(OBC),直接向电池提供更⾼的功率,并根据电池容量以200A-500A的额定电流进⾏充电,以更高功率充电来实现大幅减少充电时间的目标。9d1b7448-da1a-11ee-a297-92fbcf53809c.png

为了实现更快的充电,以适配更高的电动汽车电池电压并提高整体功率效率,DCFC必须在更高的电压和功率水平下运行,这给OEM制造商带来的挑战是必须设计一种能在不影响可靠性或安全性的情况下优化效率的架构。由于DCFC和超快充电桩集成了各种元器件,包括辅助电源、传感、电源管理、连接和通信器件,同时需要采⽤灵活的制造⽅法以满⾜各种电动汽⻋不断变化的充电需求,这给DCFC和超快速充电桩设计带来更多的复杂性。

之前我们介绍过设计直流超快充电桩方案必知的几种常见拓扑,今天将继续为大家带来交错式DAB变换器双有源桥谐振变换器三电平 DNPC LLC 谐振变换器以及串联半桥 (SHB) LLC 谐振变换器等拓扑结构的详细解析。

交错式DAB变换器

交错式DAB变换器将损耗分配到两个变压器并允许使⽤成本优化的安森美(onsemi) EliteSiC全桥功率集成模块。我们可以使⽤EliteSiC F2全桥功率集成模块(如NXH008T120M3F2PTHG)来开发60kW DAB变换器,并使⽤Elite Power 仿真工具来计算所有桥的功率损耗。为了实现360kW直流快速充电系统,我们可以并联6路60kW充电系统模块。安森美建议在60kW隔离组件块的初级和次级上实施F2全桥模块。

9d2e9d84-da1a-11ee-a297-92fbcf53809c.png

9d32648c-da1a-11ee-a297-92fbcf53809c.png

图7. 交错式双有源桥变换器

双有源桥谐振变换器

对于双向功率流,双有源桥(DAB)谐振变换器是DAB变换器的替代解决⽅案。DAB变换器中添加一个额外的谐振电路来实现DAB谐振变换器。这些设计中主要使⽤LC(串联谐振)、LLC 和 CLLC谐振电路。由于电路的对称性,CLLC DAB变换器在两个功率流⽅向上提供相同的电压增益特性。CLLC变换器在变压器两侧使⽤两个谐振电容,与LLC变换器相⽐,可以减少电容上的应力。DAB CLLC谐振变换器如图8所⽰。9d2e9d84-da1a-11ee-a297-92fbcf53809c.png

9d4a5c4a-da1a-11ee-a297-92fbcf53809c.png

图8. 双有源桥 CLLC 谐振变换器

同DAB变换器相⽐,因为分别具有较小的谐振电感和较⼤的漏感,DAB谐振CLLC变换器中循环的⽆功功率较小。然⽽,DAB谐振变换器(LLC或CLLC)在轻负载条件下会出现ZVS问题,在宽输出电压范围和负载条件下会出现效率下降。为了实现初级和次级桥电路的输出电压调节和ZVSCS,需要实施混合调制⽅案。变频运⾏、移相控制、PWM占空⽐控制和延迟关断控制是常⻅的控制⽅法。根据电池充电器的输出电压和负载范围,可以组合两种或三种⽅法进⾏混合控制。由于所有电源开关均采⽤软开关,DAB谐振变换器可提供最佳的EMI性能。

建议将EliteSiC功率集成模块(半桥或全桥)⽤于⾼功率DAB CLLC谐振变换器应⽤。建议将 NXH003P120M3F2 EliteSiC半桥功率集成模块⽤于DAB谐振CLLC变换器,以提供25kW⾄120kW的功率。对于120kW设计,可以使用三相交错双有源半桥谐振变换器在三个变换器之间分配功率损耗。在初级和次级均具有集成谐振电感的变压器将提⾼DAB谐振变换器的密度和效率。交错式三相双有源半桥谐振变换器如图9所⽰。

9d552efe-da1a-11ee-a297-92fbcf53809c.png

图9. 交错式三相双有源半桥CLLC谐振变换器

三电平DNPC LLC谐振变换器

三电平DNPC LLC谐振变换器由三电平半桥电路、钳位⼆极管、谐振 LLC 电路和次级全桥电路组成,如图10所⽰

DNPC拓扑结构被视为谐振LLC电路初级侧的主要拓扑,因为它与上⾯所⽰的整流PFC前端和两级全桥的相脚具有相同的结构。DNPC谐振LLC电路的工作原理可以⽤谐振频率来解释。这同样适⽤于⾼于或低于谐振频率。开关S2和S3以50%的占空⽐运⾏,并有死区时间。外部开关S1与S2同时导通,但较早关闭以提供另一个死区时间。相对于S3,此模式适⽤于S4。因此,S1和S4以略低于50%的占空比工作,以适应此死区时间。

DNPC LLC电路具有复杂的换相过程,涉及多个器件。ZVS切换条件将分两步实现,第一步将输出电容从初始电压放电⾄一半电压。然后下一步放电⾄0V以实现零电压开启。由于ZVS的复杂性,S3和S4的开启情况不同。与两电平LLC拓扑类似,需要变频控制来调节输出电压。可以添加相移控制或PWM占空⽐控制来实施混合调制控制,以在所有负载条件下保持ZVS状态。9d2e9d84-da1a-11ee-a297-92fbcf53809c.png

9d6795ee-da1a-11ee-a297-92fbcf53809c.png

图10. 3电平DNPC LLC谐振变换器

串联半桥 (SHB) LLC谐振变换器

串联半桥(SHB)LLC 谐振拓扑是多电平拓扑的另一种变体,可⽤作 LLC 电路的初级拓扑,以承受⾼输⼊电压。图11所⽰的SHB LLC电路具有与DNPC谐振LLC拓扑相同的谐振回路和次级全桥电路。

9d6b75c4-da1a-11ee-a297-92fbcf53809c.png

图11. 串联半桥LLC谐振变换器(参考⽂献5)

同DNPC LLC相脚相⽐,SHB LLC相脚的主要优点是消除了两个钳位⼆极管,可将动力电池的元器件数量减少。SHB LLC拓扑具有两种⽤于谐振电路操作的调制⽅案,从⽽为直流电压转换提供更⼤的控制灵活性。外部开关S1和S4发⽣对称调制,具有相同的信号和50%占空⽐,⽽内部开关S3和S4与具有死区时间的其他开关互补。

对于对称调制,初级桥相电压以50%占空⽐在Vbus和0V之间切换。对于⾮对称调制,外部开关S1和S4具有25%的占空⽐,⽽内部开关S3和S4具有75%的占空⽐。S1和S4的栅极信号不像对称调制那样同步。相反它们相移180度。该相移也适⽤于内部开关S3和S4。

在⾮对称调制中,上半部和下半部总线电压交替连接到相脚输出,以两倍于器件开关频率的速度在Vbus的一半和零之间切换。两种调制⽅案的谐振回路两端的电压也不同。⾮对称调制的相脚电压的平均值是对称调制的相同电压的一半。然⽽,⾮对称调制的 相脚电压的等效频率是对称调制的两倍。输出电压的差异影响很多⽅⾯,例如输出电压范围、谐振回路值、开关频率范围以及软开关条件。

SHB电路的主要优点是谐振回路两端的激励电压有3个不同的电平(Vbus、0.5Vbus、0)。通过调制⽅案电压具有两个频率。直流电压转换的输出电压可以通过调制进⾏⼤范围调整。开关频率可降低一半,以实现与DNPC LLC 拓扑相同的等效工作开关频率。这些功能为SHB LLC电路增加了更多灵活性,可处理宽输⼊电压或输出电压范围。与DNPC拓扑相⽐,SBH电路的主要优点是结构更简单。

结论

在评估了各种隔离式DC-DC拓扑结构之后,安森美认为双有源桥变换器( Dual Active Bridge Converter)拓扑是具有双向充电功能的更优化解决⽅案。DAB变换器具有较少的元器件,且用在⾼功率直流快速充电桩应⽤中无需串联谐振电容,安森美使用NXH010P120M3F1半桥模块开发了25kW 直流快速充电桩参考设计以演示这种拓扑结构。对于⼤于100kW的设计,交错式DAB变换器是一种合适的拓扑结构。

DC−DC转换的EliteSiC M3S 功率集成模块选型表

9d77fd1c-da1a-11ee-a297-92fbcf53809c.png





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    155

    文章

    11156

    浏览量

    223048
  • 电源管理
    +关注

    关注

    112

    文章

    6013

    浏览量

    141106
  • LLC
    LLC
    +关注

    关注

    34

    文章

    502

    浏览量

    75928
  • 充电桩
    +关注

    关注

    136

    文章

    1875

    浏览量

    81833
  • 谐振变换器
    +关注

    关注

    1

    文章

    66

    浏览量

    15537
  • 直流充电桩
    +关注

    关注

    5

    文章

    51

    浏览量

    6859

原文标题:如何为直流超快充电桩设计选择合适的拓扑结构?

文章出处:【微信号:onsemi-china,微信公众号:安森美】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    充电小科普】如何分辨直流充电和交流充电

    解决方案.今日为各位网友充电的问题!大家知道,充电是给电动汽车”加油”的充电设施,
    发表于 07-13 15:54

    独自开发10KW级充电,满满都是辛酸泪

    就来帮大家分析分析!   充电系统开发有难度 直流充技术门槛高   一个完整的充电系统,包
    发表于 02-07 18:28

    直流充电的区别

    具备充电功能, 其只是单纯提供电力输出, 还需要连接电动汽车车载充电机,方可起到为电动汽车电池充电的作用。 由于电动汽车车载充电机的功率一般都比较小,所以交流
    发表于 11-27 14:27

    直流充电的发展趋势

    一、从未来新能源汽车的要求来看充电的发展趋势60~90kW的直流即将被市场淘汰。在伴随着一个最新的新能源客车补贴方案的推出,我们可以预见
    发表于 05-31 11:04

    请问直流充电和交流充电的区别是什么?

    本帖最后由 一只耳朵怪 于 2018-6-5 16:22 编辑 现在市场上有越来越多的交、直流充电,那么我们如何区分他们呢?南京阿尔克为你讲解交、直流
    发表于 06-05 10:41

    区分新能源充电直流和交流的方法

    充电机提供电力输入,由于车载充电机的功率并不大,所以不能实现快速充电直流快速充电是固定安装
    发表于 07-24 12:02

    直流充电区别

    直流电动汽车充电站,俗称就是“充”,它是固定安装在电动汽车外,与交流电网连接,可以为非车载电动汽车动力电池提供直流电源的供电装置。直流
    发表于 11-22 16:58

    电源从业者必会之12种开关电源拓扑及计算公式

    =oxh_wx3、【周启全老师】开关电源全集http://t.elecfans.com/topic/130.html?elecfans_trackid=oxh_wx 电源从业者必会12种开关电源拓扑及计算公式
    发表于 06-02 22:03

    直流充电中的直流传感器的问题

    想问一下充电专家们,现在直流充电中是否有使用直流传感器/互感器呢?
    发表于 09-09 15:07

    涨知识,电动汽车充电设计技术、难点、优化方案

    本资料主要介绍了电动汽车充电优化控制策略,电动汽车的充放电设备、监控系统设备和谐波治理设备,以及它们各自的技术要求与实现,电动汽车直流充电(
    发表于 06-16 15:56

    直流充电电源的解决方案

    。由于直流充电采用三相四线制供电,可以提供足够的功率,输出的电压和电流调整范围大,可以实现充的要求。    二、解决方案:  
    发表于 07-02 15:50

    交流充电配套EV Charger电源方案

    的作用的。    二、解决方案:  EV Charger充电器的作用将220V的交流电转换层给电池组充电直流电,功率器件可以采用性价比高的MOS管,二极管采用大电流的肖特基,其功率转
    发表于 07-02 16:01

    直流快速充电相关资料推荐

    直流充电为例,假设汽车上的电池容量为60千瓦时(也就是电池容量在60度电左右),根据车辆的充电时间,并考虑电池的充电率,
    发表于 11-12 07:14

    直流充电测试系统

    直流充电测试系统 系统介绍充电测试系统是成都虹威科技有限公司针对交直流
    发表于 09-20 14:51

    充电市场简析、分类及选型参考

    CRJQ33N65G2F CRJQ30N60G2F CRXQ40M120G1 CRXQ80M120G1 图-8:SiC 功率器件在直流充电的应用-全SiC方案 款号列举: CRX
    发表于 10-17 17:12