0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

金属陶瓷胶黏剂封装工艺及可靠性研究

半导体封装工程师之家 来源:半导体封装工程师之家 作者:半导体封装工程师 2024-03-05 08:40 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

共读好书

王强翔 李文涛 苗国策 吴思宇

(南京国博电子股份有限公司)

摘要:

本文重点研究了金属陶瓷功率管胶黏剂封装工艺中胶黏剂的固化温度、时间、压力等主要工艺参数对黏结效果的影响。通过温度循环、湿热实验对封装可靠性进行验证,并以密封性能、剪切强度作为量化指标来表征,同时讨论了胶黏剂封装工艺中的常见缺陷及其改进方法。经研究分析得出:功率管胶黏剂封装在适合的固化温度、时间及压力条件下,可以获得优异的封装质量。

电子封装中,管壳为内部芯片电路提供了可靠的电气连接、机械支撑及工作环境。为了保障芯片拥有良好的工作环境,防止水汽、污染物及有害气体对芯片造成损伤,通常需要提供相对密封的环境,即密封封装 [1] 。目前,可以通过多种途径实现密封封装,如基于钎焊工艺的锡封、基于电阻焊工艺的平行封焊、基于熔焊工艺的激光封焊以及树脂灌封工艺和胶黏剂封装工艺。各种密封工艺均有着其各自的适用场合,其中金属陶瓷管壳封装、金属LCP封装均采用了胶黏剂封盖的封装结构,如图1所示。相较于其他封装结构,这种封装结构的特殊之处在于内部无填充,I/O引脚位于封装界面。与其他封装结构一样,胶黏剂封盖工艺也需要能够经受老化、温冲、震动加速度、耐湿等可靠性试验的考核,因此其结构设计、胶黏剂选用及封盖工艺过程对封装的整体可靠性有着重要的影响。在功率管胶黏剂封装工艺中,经常会出现一些典型问题,如密封不良、强度低和尺寸一致性较差等,本文将针对这些常见问题进行功率管胶黏剂封装工艺研究。

1 胶黏剂封装

电子元器件的封装工艺有很多,常见有以下几种封装类型:(1)非填充型封装。如中空式金属盒体封装、陶瓷封装,一般在高导热高可靠情况下应用。(2)填充型封装。如塑封,常见的DIP、QFP、QFN、BGA等器件的封装均采用填充型塑封工艺,塑封工艺的特点为质量可靠、成本低、效率高、可大规模生产。

目前功率管的一种封装方式为非填充型的金属陶瓷封装。这种封装方式采用金属管壳及陶瓷盖板,通过胶黏剂将两种或两种以上同质或异质的材料连接在一起 [2] 进行黏结封装,内部无填充材料 [3-4] 。其主体结构为陶瓷盖板和金属管壳,一般在陶瓷盖板的装配界面预涂胶黏剂,与管壳装配后经固化完成封装,如图1所示。陶瓷盖板一般采用氧化铝白陶瓷,金属管壳由引线框架和导热热沉组成。下文即以该种结构器件为样品针对胶黏剂封装工艺参数及封装可靠性进行实验研究。工艺对主要材料胶黏剂的一般要求为:(1)密封性好,保证内部器件工作环境不受外界影响;(2)无有害挥发物,不会对内部器件造成损坏;(3)黏结强度高,保证封装体整体机械强度;(4)可靠性高,耐温度循环、湿热环境等 [5-6] 。

f9df0fa0-da88-11ee-b759-92fbcf53809c.png

2 实验研究

2.1 实验准备

实验用封装器件为表面镀金的铜金属基板(模拟管壳)、氧化铝陶瓷盖板,如图2所示,其中铜金属基板的结构尺寸为20 mm×10 mm×1 mm,氧化铝陶瓷盖板的结构尺寸为19.5 mm×9.6 mm×2.5 mm。实验采用人工装配,通过标准砝码施加压合力,使用热台加热。本研究使用密封性能、剪切强度及封装尺寸作为评价标准:(1)密封良率使用国家军用标准GJB 360B—2009《电子及电气元件试验方法》中方法112条件D进行密封检测,对于电子器件,密封条件可以为产品内部的芯片提供良好的工作环境,避免受到外界环境或污染物影响;(2)剪切强度使用推拉力测试仪(Dage4000)进行检测,剪切强度是保证器件结构完整性的最基本指标;(3)封装尺寸使用平面轮廓仪进行尺寸检测。定义以上三方面的评价指标后,理想的封装效果为密封效果好、强度高、尺寸一致性好、可靠性高,封装完成的器件如图3所示。

f9e2ce38-da88-11ee-b759-92fbcf53809c.png

f9f1d8ce-da88-11ee-b759-92fbcf53809c.png

2.2 封装实验

实验胶黏剂预涂于陶瓷盖板表面。在胶封工艺中存在预热过程、装配过程、固化过程。按各过程的各个阶段,胶封工艺的主要参数有预热温度Tx、预热时间tx、固化压合力F、压合时间ty、固化温度Tz、固化时间tz。一般胶黏剂的固化温度Tz和固化时间tz为定值推荐,本实验不做研究,均设定为胶体的推荐值。实验针对预热温度Tx、预热时间tx、固化压合力F、压合时间ty进行研究,参数如表1所示。采用温度循环及湿热加速实验评价黏结可靠性,具体条件如表2所示。其中,温度循环实验每100次抽取10只样品进行密封和剪切强度测试,湿热加速实验每24 h抽取10只样品进行密封和剪切强度测试。

fa049658-da88-11ee-b759-92fbcf53809c.png

fa17ed8e-da88-11ee-b759-92fbcf53809c.png

2.3 结果与分析

2.3.1 预热工艺实验

预热工艺实验研究的工艺参数主要为Tx、tx,实验结果如表3所示。结果表明,要合理地设计预热温度和时间才能获得较高的密封良率,温度越高对应的时间越短,但过高的预热温度会带来较短的工艺时间窗口。在工程应用中,可以选取适中的预热温度来提供充足的工艺时间窗口,如实验中160 ℃的预热条件下,时间窗口为2 min,而125 ℃的预热条件下,时间窗口有4 min以上。不充分的预热过程和过度的预热过程均会导致密封成品率下降,前者是因为胶体固化程度过低,仍具有较高的流动性,无法形成较稳定的形态,在压合过程中极易出现气孔;后者是因为胶体固化程度过高,流动性过低,在压合过程中对界面的润湿能力下降,甚至已经固化无法润湿黏结界面,导致密封不良。需要注意的是,不充分的预热过程仅对密封良率产生影响,只要压合力合适,封装后的器件仍具有较高的剪切强度,而过度的预热过程不仅影响密封良率还会影响剪切强度。

2.3.2 压合工艺实验

压合工艺实验研究的工艺参数主要为F、ty。胶黏剂中的环氧树脂在固化时需要施加一定的压力,主要原因是树脂固化时,分子间发生化学反应,自由体积缩小,在黏结界面会产生固化收缩现象,这时需要从外界施加压力弥补固化收缩,确保黏结界面紧密贴合。图4为不同压合力固化条件下制作的样品,从左至右压合力逐渐增大,使用平面轮廓仪扫描盖板可以得到其表面轮廓尺寸,通过制作截面样品可以得出胶层厚度尺寸。实验结果如表4所示,结果表明:(1)随着压合力的增加胶层厚度变小,剪切强度提升,在压合力达到100 g以上时,胶层厚度和剪切强度进入稳定区间;(2)在较低的压合力下,除了黏结剪切强度低之外,还有黏结面不平整问题;(3)表5为不同压合时间下的样品剪切强度测试表,结果表明需保持一定的压合时间才能保持黏结状态,若压合时间不足,胶体固化程度很低,仍处于可流动状态,压合力撤销后,盖板将在胶体中“浮起”,导致胶层厚度发生变化,最终影响剪切强度和表面平整度,严重的情况下甚至可能发生单侧翘起,如图5所示。

fa1bbe28-da88-11ee-b759-92fbcf53809c.png

fa33bb0e-da88-11ee-b759-92fbcf53809c.png

fa44f536-da88-11ee-b759-92fbcf53809c.png

2.3.3 可靠性工艺实验

可靠性工艺实验结果如表6和表7所示。结果表明:(1)湿热对黏结质量影响巨大,随着湿热实验的进行,密封性能和剪切强度大幅下降,96 h湿热实验后,密封成品率下降50%,剪切强度下降40%;(2)温度循环对黏结质量影响较小。封装胶黏剂作为一种环氧树脂,具有良好的黏结性、力学强度、耐化学介质、电绝缘、尺寸稳定性以及工艺性等优势,但也存在环氧树脂的缺点——耐湿热能力差。水分子由于体积小,在湿热环境下很容易进入环氧树脂内部,降低已经固化形成的化学结构的稳定性,如导致局部化学键断裂,破坏分子间作用力,降低交联度。其次水分子进入后会对树脂产生溶胀,使整个系统的自由体积增大,分子间距离增大,进一步降低结构的稳定性,最终导致密封失效,强度大幅降低 [7] 。

fa511244-da88-11ee-b759-92fbcf53809c.png

2.4 常见问题

在功率管胶黏剂封装过程中,常见问题有:(1)气孔,造成密封不良,表现形式为局部位置的微小孔洞,如图6(左)所示。其主要的产生原因是在固化过程中内部气体受热膨胀并向外部排出进而形成贯穿型通道,从外部观察即为微小孔洞。设定压合前预热温度为T0,压合后固化温度为T1,根据理想气体状态方程PV=nRT,初始压强为P0,压合后固化温度下压强为P1,随着温度的升高(T1>T0),其内部气压升高,当ΔP(=P1-P0)达到一定程度时,即可突破胶层形成气流通道,导致密封不良。因此,可以通过降低ΔP来降低气孔的发生概率。设计合适的预热温度和时间可以减小压合前、后过程中器件的内外压差,进而降低气孔密封不良的发生概率。(2)裂纹,造成密封不良,表现形式为局部区域细微裂纹,如图6(右)所示。在温度循环实验后的失效样品中可以发现,其由环氧胶体固化后硬脆,在温度交替变化的条件下与金属、陶瓷之间产生应力失配导致。基于此,对不同胶层厚度的样品进行单独的温度循环实验,发现裂纹更容易在胶层较厚的样品中出现,如表8所示。(3)强度不足。在不考虑胶体自身材料因素的情况下,黏结强度低的主要原因为黏结界面污染、胶层过厚和固化不充分,可以通过增加压合力和优化固化温度曲线来保证黏结强度。

fa610f96-da88-11ee-b759-92fbcf53809c.png

fa745380-da88-11ee-b759-92fbcf53809c.png

3 结论

胶黏剂封装具有成本低、效率高和应用范围广的特点,其工艺过程中的常见缺陷为密封不良和黏结强度低。本文通过实验研究得出金属陶瓷功率管胶黏剂封装在适合的固化温度、时间及压合力条件下,可以获得优异的封装质量,具备较高的黏结强度和密封成品率。其中,压合力(胶层厚度)是影响剪切强度的主要因素;预热温度和预热时间是影响密封成品率的主要因素;胶黏剂封装耐湿热能力一般,经过湿热实验后其剪切强度和密封效果大幅下降,在应用中需要充分考虑环境条件。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 封装
    +关注

    关注

    128

    文章

    9139

    浏览量

    147887
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    解决电子封装痛点!IXE/IXEPLAS 离子捕捉如何守护 IC 可靠性

    在半导体与电子元器件领域,“可靠性” 始终是核心命题 —— 哪怕封装材料中微量的 Cl⁻、Na⁺等杂质离子,都可能在长期使用中引发铝布线腐蚀、银电极迁移,最终导致设备故障。而东亚合成研发的 IXE
    的头像 发表于 11-21 16:04 118次阅读
    解决电子<b class='flag-5'>封装</b>痛点!IXE/IXEPLAS 离子捕捉<b class='flag-5'>剂</b>如何守护 IC <b class='flag-5'>可靠性</b>?

    汉思新材料:芯片底部填充可靠性有哪些检测要求

    芯片底部填充可靠性有哪些检测要求?芯片底部填充(Underfill)在先进封装(如FlipChip、CSP、2.5D/3DIC等)中起着至关重要的作用,主要用于缓解焊点因热膨胀系数
    的头像 发表于 11-21 11:26 147次阅读
    汉思新材料:芯片底部填充<b class='flag-5'>胶</b><b class='flag-5'>可靠性</b>有哪些检测要求

    Vishay Sfernice P16FNP金属陶瓷旋钮电位器技术解析:工业控制与音频应用的革新设计

    Vishay/Sfernice P16FNP金属陶瓷旋钮电位器采用塑料旋钮,非常适合用于经济高效的设计。旋钮集成和驱动金属陶瓷电位器,这种结构将所需的电气间隙降至最低,因为仅安装硬件和端子位于面板
    的头像 发表于 11-13 11:17 304次阅读
    Vishay Sfernice P16FNP<b class='flag-5'>金属陶瓷</b>旋钮电位器技术解析:工业控制与音频应用的革新设计

    ‌Vishay Sfernice P16F/PA16F金属陶瓷旋钮电位器技术解析

    Vishay/Sfernice P16FNM金属陶瓷旋钮电位器采用金属旋钮结构,可在应用中实现耐用和稳健。这些IP67级密封器件在单个元件中集成了一个带面板电位器的旋钮,无需额外组
    的头像 发表于 11-10 13:45 237次阅读
    ‌Vishay Sfernice P16F/PA16F<b class='flag-5'>金属陶瓷</b>旋钮电位器技术解析

    Vishay Sfernice M61系列金属陶瓷微调电位器技术解析

    Vishay/Sfernice M61 3/8”方形单匝金属陶瓷微调电位器有多种引脚配置可供选择,用于手指设置。这些微调电位器通过物理操作轻松调整电阻值,组装在PCB上后可提供稳定性。M61系列采用
    的头像 发表于 11-10 11:44 343次阅读
    Vishay Sfernice M61系列<b class='flag-5'>金属陶瓷</b>微调电位器技术解析

    汉思底部填充:提升芯片封装可靠性的理想选择

    一、底部填充的作用与市场价值在电子封装领域,底部填充(Underfill)已成为提升芯片可靠性不可或缺的关键材料。随着芯片封装技术向高密
    的头像 发表于 09-05 10:48 1933次阅读
    汉思底部填充<b class='flag-5'>胶</b>:提升芯片<b class='flag-5'>封装</b><b class='flag-5'>可靠性</b>的理想选择

    太诱MLCC电容的可靠性如何?

    众所周知,多层陶瓷电容器(MLCC)已成为消费电子、汽车电子、工业控制等领域的核心被动元件。太阳诱电(太诱)通过材料创新、工艺优化与严苛测试体系,构建了MLCC电容的可靠性护城河,其产品失效率长期
    的头像 发表于 07-09 15:35 481次阅读

    晶振常见封装工艺及其特点

    常见晶振封装工艺及其特点 金属封装 金属封装堪称晶振封装界的“坚固卫士”。它采用具有良好导电
    的头像 发表于 06-13 14:59 579次阅读
    晶振常见<b class='flag-5'>封装工艺</b>及其特点

    提升功率半导体可靠性:推拉力测试机在封装工艺优化中的应用

    。本文科准测控小编将介绍如何通过Beta S100推拉力测试机等设备,系统研究了塑封功率器件分层的失效机理,分析了材料、工艺等因素对分层的影响,并提出了针对工艺改进方案,为提高塑封
    的头像 发表于 06-05 10:15 676次阅读
    提升功率半导体<b class='flag-5'>可靠性</b>:推拉力测试机在<b class='flag-5'>封装工艺</b>优化中的应用

    晶振封装技术革命:陶瓷VS金属封装如何影响设备可靠性

    设备整体的可靠性陶瓷金属和塑料是当前晶振封装的主要材料,它们各自具备独特的性能优势,在不同应用场景下展现出不同的可靠性表现。本文将深入探
    的头像 发表于 05-10 11:41 528次阅读

    提供半导体工艺可靠性测试-WLR晶圆可靠性测试

    随着半导体工艺复杂度提升,可靠性要求与测试成本及时间之间的矛盾日益凸显。晶圆级可靠性(Wafer Level Reliability, WLR)技术通过直接在未封装晶圆上施加加速应力,
    发表于 05-07 20:34

    电机控制器电子器件可靠性研究

    的提高,在某些特定的武器装备上,由于武器本身需要长期处于储存备战状态,为了使武器能够在随时接到战斗命令的时候各个系统处于高可靠性的正常运行状态,需要对武器系统的储存可靠性进行研究,本文着重通过试验
    发表于 04-17 22:31

    芯片封装工艺详解

    封装工艺正从传统保护功能向系统级集成演进,其核心在于平衡电气性能、散热效率与制造成本‌。 一、封装工艺的基本概念 芯片封装是将半导体芯片通过特定工艺
    的头像 发表于 04-16 14:33 1896次阅读

    集成电路前段工艺可靠性研究

    在之前的文章中我们已经对集成电路工艺可靠性进行了简单的概述,本文将进一步探讨集成电路前段工艺可靠性
    的头像 发表于 03-18 16:08 1479次阅读
    集成电路前段<b class='flag-5'>工艺</b>的<b class='flag-5'>可靠性</b><b class='flag-5'>研究</b>

    精通芯片粘接工艺:提升半导体封装可靠性

    随着半导体技术的不断发展,芯片粘接工艺作为微电子封装技术中的关键环节,对于确保芯片与外部电路的稳定连接、提升封装产品的可靠性和性能具有至关重要的作用。芯片粘接
    的头像 发表于 02-17 11:02 1976次阅读
    精通芯片粘接<b class='flag-5'>工艺</b>:提升半导体<b class='flag-5'>封装</b><b class='flag-5'>可靠性</b>