0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于双极性电极的微流控芯片,用于生物颗粒和细胞分选

微流控 来源:分析人 2024-02-25 10:09 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在生物化学应用中,对细胞或颗粒进行无鞘流聚焦和分选是一个重要的预处理步骤。以往的分选方法大多依赖于使用鞘流来实现高效的细胞聚焦。然而,鞘流的引入会稀释并降低生物颗粒的活性,并需要通过额外的通道进行精确的流量控制,于系统的搭建成本和复杂性不利。因此,如何实现无鞘流聚焦和分选一直是该领域需要解决的问题。

近期,西北工业大学吴玉潘副教授、王少熙教授课题组报道了一种新型方法:通过基于双极性电极(BPE)的感应电荷电渗(ICEO)流和介电泳(DEP)力以及声辐射力的协同作用,实现了对颗粒和细胞的无鞘流聚焦、偏移和分选。相关成果以“Bipolar Electrode-based Sheath-Less Focusing and Continuous AcousticSorting of Particles and Cells in an Integrated Microfluidic Device”为题发表在国际化学权威杂志Analytical Chemistry上。

基于以上方法,研究人员开发了一种简单低成本的集成式微流控芯片,其中包括细胞与颗粒的电场聚焦偏移与声场分选两个模块,分别称为模块I与模块II。如图1所示,可以看到,该集成式微流控芯片结构简单,包括一个用于样品注射的入口和两个用于分选和收集目标颗粒的出口。模块I中有两个BPE,分别为BPE i和BPE ii。其中BPE i始终处于悬浮态,用于预聚焦颗粒或细胞;而BPE ii提供了与外电路的接口,可通电变为激发态,用于偏移经BPE i聚焦后形成的粒子束。而模块II具有倾斜的叉指换能器(IDT),由于逆压电效应,在通道中形成了taSSAW,多条压力波节线连续捕获受到声场作用力更大的颗粒,用于分选目标颗粒。

54291f34-d2b2-11ee-a297-92fbcf53809c.png

图1 (a)用于颗粒聚焦与分选的集成式微流控芯片工作原理示意图;(b)BPE上的ICEO原理;(c)SSAW声场形成原理。其中,AN为压力波腹,PN为压力波节。

该集成微流控芯片的3D示意图、实物图以及加电方式如图2所示。

5433466c-d2b2-11ee-a297-92fbcf53809c.png

图2 用于颗粒电场聚焦与声场分选的集成式微流控芯片示意图:(a)集成式聚焦分选微流控芯片的3D示意图;(b)集成式聚焦分选微流控芯片实物图;(c)图(b)中红色虚线区域I的显微图,即电场聚焦模块的通道以及电极(指出了加电方式);(d)图(b)中红色虚线区域II的显微图,即声场分选模块的通道以及电极(指出了加电方式)。

研究人员首先通过分选5 μm和8 μm PS微球来验证这种集成式微流控芯片的功能(图3),然后通过改变BPE的电压来精确调整粒子束以实现更高的分选性能(图4)。为了验证对细胞的有效性,研究人员还对THP-1细胞和酵母细胞进行了集成的无鞘流电场聚焦、偏移和声学分选,获得了比有鞘流声学分选更好的性能(图5)。

5437b152-d2b2-11ee-a297-92fbcf53809c.png

图3 悬浮电极BPE ii未加电时,对8 μm 与5 μm PS微球的电场聚焦和声场分选。

543c0df6-d2b2-11ee-a297-92fbcf53809c.png

图4 悬浮电极BPE ii接地时,对8 μm与5 μm PS微球的电场聚焦偏移和声场分选。

5452a1c4-d2b2-11ee-a297-92fbcf53809c.png

图5 对THP-1细胞与酵母菌的电场聚焦和声场分选:(a)THP-1细胞和酵母菌的CM因子实部比较;(b)不同频率(30 kHz ~ 40 MHz)下THP-1细胞和酵母菌在悬浮电极表面的平均DEP速度与ICEO流速的比较;(c-f)聚焦分选实验效果及统计分析。

综上所述,研究人员提出了一种用于聚焦、偏移和分选细胞的无鞘流且稳定的微流控方法。这种方法减少了使用的泵的数量和系统的体积,同时降低了成本,进一步为以非接触、生物相容和无标签的方式进行无鞘流细胞分选提供了一种新的独特途径,在生物研究和疾病诊断中显示出巨大的潜力。




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 微流控芯片
    +关注

    关注

    13

    文章

    310

    浏览量

    19946
  • 换能器
    +关注

    关注

    8

    文章

    389

    浏览量

    30840

原文标题:基于双极性电极的微流控芯片,用于生物颗粒和细胞分选

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    基于宽带功率放大器的声细胞高效分选创新方案

    实验名称: 声细胞分选 研究方向: 基于声控的活死细胞分选技术是一种利用声波在
    的头像 发表于 09-28 11:29 390次阅读
    基于宽带功率放大器的声<b class='flag-5'>流</b>控<b class='flag-5'>细胞</b>高效<b class='flag-5'>分选</b>创新方案

    ATA-2161高压放大器与芯片液滴分选:精准操控与高效应用

    实验名称: 芯片中操控液滴充电分选实验 研究方向:
    的头像 发表于 09-16 11:35 352次阅读
    ATA-2161高压放大器与<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>液滴<b class='flag-5'>分选</b>:精准操控与高效应用

    核液滴电场精准融合:电压放大器赋能控混合强化实验

    实验名称:核复合液滴融合实验 研究方向:控技术是近些年发展起来的新兴技术,它将纳米通道集成到几平方厘米的芯片上,并通过施加外加物理场
    的头像 发表于 08-13 11:39 397次阅读
    <b class='flag-5'>双</b>核液滴电场精准融合:电压放大器赋能<b class='flag-5'>微</b><b class='flag-5'>流</b>控混合强化实验

    电压放大器:微电极芯片研究的关键技术应用

    实验名称: 电压放大器在微电极芯片研究中的应用 研究方向:
    的头像 发表于 08-01 18:46 659次阅读
    电压放大器:微<b class='flag-5'>电极</b>微<b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>研究的关键技术应用

    电压放大器驱动液滴芯片关键功能实现研究

    实验名称: 电压放大器在液滴芯片的功能研究中的应用 研究方向: 生物芯片 测试目的:
    的头像 发表于 07-30 14:24 501次阅读
    电压放大器驱动液滴<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>关键功能实现研究

    电压放大器在介电电泳细胞分选中的应用研究

    一技术中发挥着关键作用,为介电电泳细胞分选提供了高精度和高稳定性的信号放大与控制。 二、介电电泳细胞分选原理 介电电泳技术基于细胞在非均匀电
    的头像 发表于 07-02 11:45 454次阅读
    电压放大器在介电电泳<b class='flag-5'>细胞</b><b class='flag-5'>分选</b>中的应用研究

    基于细胞控的阻抗测试解决方案

    基于细胞控的阻抗测试技术,作为一种新兴的技术,结合了芯片技术与电阻抗谱(EIS)技术,
    的头像 发表于 07-02 11:07 1047次阅读
    基于<b class='flag-5'>细胞</b><b class='flag-5'>微</b><b class='flag-5'>流</b>控的阻抗测试解决方案

    飞秒激光技术在芯片中的应用

    和传统芯片不同,芯片更像是一个微米尺度的“生化反应平台”。详细来说,
    的头像 发表于 04-22 14:50 1063次阅读
    飞秒激光技术在<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>中的应用

    ATA-2161高压放大器在介电电泳芯片研究中的应用

    实验名称:芯片的系统集成 测试设备:ATA-2161高压放大器、信号发生器、矢量网络分析仪、电脑等。 实验过程: 图1:液滴产生、LC无源无线检测和介电电泳力分选
    的头像 发表于 04-09 11:56 422次阅读
    ATA-2161高压放大器在介电电泳<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>研究中的应用

    功率放大器在液滴细胞分选中的应用

    领域中的应用,提出了一种利用通道和芯片实现单细胞分选的新方法,并详细介绍了基于
    的头像 发表于 04-03 10:08 591次阅读
    功率放大器在液滴<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>细胞</b><b class='flag-5'>分选</b>中的应用

    Aigtek功率放大器在控医学领域研究中有哪些应用

    重要意义。 控技术在医学领域的应用主要包括以下几个方面: 1.细胞分析和筛选:控技术可以在微小的通道中对单个
    的头像 发表于 04-01 10:58 591次阅读
    Aigtek功率放大器在<b class='flag-5'>微</b><b class='flag-5'>流</b>控医学领域研究中有哪些应用

    芯片细胞培养检测中的应用

    芯片系统由于分析速度快、试剂消耗少、便于集成和高通量分析等优点而被广泛应用于生化分析等各领域.过去20年中,伴随材料科学的发展以及利用
    的头像 发表于 02-06 16:07 799次阅读

    Aigtek高电压放大器细胞筛选测试

    、应用以及高压放大器在其中的作用。 细胞筛选的基本概念 细胞筛选是指在
    的头像 发表于 01-20 16:33 677次阅读
    Aigtek高电压放大器<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>细胞</b>筛选测试

    控技术在病原微生物检测中的研究进展

    快速、准确地检测病原微生物对于疫情防控和保障人民生命健康具有重大意义。近几年,研究者们通过合理地设计芯片,将Elveflow
    的头像 发表于 12-25 16:18 1019次阅读

    玻璃芯片的特点

    得它们非常适合于需要光学观察和分析的应用,如荧光显微镜观察、激光诱导荧光(LIF)检测等。 2. 优异的耐高压性 玻璃芯片能够承受较高的压力,这使得它们适用于需要高压操作的实验,
    的头像 发表于 12-13 15:26 857次阅读