0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

鸿蒙轻内核源码分析:虚拟文件系统 VFS

王程 来源: jf_75796907 作者: jf_75796907 2024-02-18 14:50 次阅读

VFS(Virtual File System)是文件系统的虚拟层,它不是一个实际的文件系统,而是一个异构文件系统之上的软件粘合层,为用户提供统一的类 Unix 文件操作接口。由于不同类型的文件系统接口不统一,若系统中有多个文件系统类型,访问不同的文件系统就需要使用不同的非标准接口。而通过在系统中添加 VFS 层,提供统一的抽象接口,屏蔽了底层异构类型的文件系统的差异,使得访问文件系统的系统调用不用关心底层的存储介质和文件系统类型,提高开发效率。本文先介绍下 VFS 的结构体和全局变量,然后详细分析下 VFS 文件操作接口。文中所涉及的源码,均可以在开源站点 https://gitee.com/openharmony/kernel_liteos_m 获取。

1、VFS 结构体定义

在文件 componentsfsvfsfs_operations.h 中定义了 VFS 虚拟文件系统操作涉及的结构体。⑴处的 struct MountOps 结构体封装了挂载相关的操作,包含挂载、卸载和文件系统统计操作。⑵处的 struct FsMap 结构体映射文件系统类型及其对应的挂载操作和文件系统操作,支持的文件类型包含 “fat” 和 “littlefs” 两种,通过这个结构体可以获取对应文件类型的挂载操作及文件系统操作接口。⑶处的 struct FileOps 封装文件系统的操作接口,包含文件操作、目录操作,统计等相应的接口。

⑴  struct MountOps {
        int (*Mount)(const char *source, const char *target, const char *filesystemtype, unsigned long mountflags,
            const void *data);
        int (*Umount)(const char* target);
        int (*Umount2)(const char* target, int flag);
        int (*Statfs)(const char *path, struct statfs *buf);
    };

⑵  struct FsMap {
        const char *fileSystemtype;
        const struct MountOps *fsMops;
        const struct FileOps *fsFops;
    };

⑶  struct FileOps {
        int (*Open)(const char *path, int openFlag, ...);
        int (*Close)(int fd);
        int (*Unlink)(const char *fileName);
        int (*Rmdir)(const char *dirName);
        int (*Mkdir)(const char *dirName, mode_t mode);
        struct dirent *(*Readdir)(DIR *dir);
        DIR *(*Opendir)(const char *dirName);
        int (*Closedir)(DIR *dir);
        int (*Read)(int fd, void *buf, size_t len);
        int (*Write)(int fd, const void *buf, size_t len);
        off_t (*Seek)(int fd, off_t offset, int whence);
        int (*Getattr)(const char *path, struct stat *buf);
        int (*Rename)(const char *oldName, const char *newName);
        int (*Fsync)(int fd);
        int (*Fstat)(int fd, struct stat *buf);
        int (*Stat)(const char *path, struct stat *buf);
        int (*Ftruncate)(int fd, off_t length);
    };

2、VFS 重要的内部全局变量

在文件 componentsfsvfslos_fs.c 中有 2 个全局变量比较重要,⑴处定义的数组 g_fsmap 维护文件系统类型映射信息,数组大小为 2,支持 “fat” 和 “littlefs” 文件类型。⑵处的变量 g_fs 根据挂载的文件类型指向数组 g_fsmap 中的 FsMap 类型元素。⑶处的函数 InitMountInfo () 会给数组 g_fsmap 进行初始化赋值。第 0 个元素维护的 “fat” 文件类型的文件系统映射信息,第 1 个元素维护的 “littlefs” 文件类型的文件系统映射信息。涉及到的挂载操作、文件系统操作变量 g_fatfsMnt、g_fatfsFops、g_lfsMnt、g_lfsFops 在对应的文件系统文件中定义。⑷处的函数 MountFindfs () 用于根据文件类型从数组中获取文件映射信息。

⑴  static struct FsMap g_fsmap[MAX_FILESYSTEM_LEN] = {0};
⑵  static struct FsMap *g_fs = NULL;

⑶  static void InitMountInfo(void)
    {
    #if (LOSCFG_SUPPORT_FATFS == 1)
        extern struct MountOps g_fatfsMnt;
        extern struct FileOps g_fatfsFops;
        g_fsmap[0].fileSystemtype = strdup("fat");
        g_fsmap[0].fsMops = &g_fatfsMnt;
        g_fsmap[0].fsFops = &g_fatfsFops;
    #endif
    #if (LOSCFG_SUPPORT_LITTLEFS == 1)
        extern struct MountOps g_lfsMnt;
        extern struct FileOps g_lfsFops;
        g_fsmap[1].fileSystemtype = strdup("littlefs");
        g_fsmap[1].fsMops = &g_lfsMnt;
        g_fsmap[1].fsFops = &g_lfsFops;
    #endif
    }

⑷  static struct FsMap *MountFindfs(const char *fileSystemtype)
    {
        struct FsMap *m = NULL;

        for (int i = 0; i < MAX_FILESYSTEM_LEN; i++) {
            m = &(g_fsmap[i]);
            if (m- >fileSystemtype && strcmp(fileSystemtype, m->fileSystemtype) == 0) {
                return m;
            }
        }

        return NULL;
    }

3、VFS 相关的操作接口

在之前的系列文章《鸿蒙轻内核 M 核源码分析系列十九 Musl LibC》中介绍了相关的接口,那些接口会调用 VFS 文件系统中操作接口。对每个接口的用途用法不再描述,快速记录下各个操作接口。

3.1 挂载卸载操作​

挂载卸载操作包含 LOS_FsMount、LOS_FsUmount、LOS_FsUmount2 等 3 个操作。⑴处在挂载文件系统之前,需要初始化文件系统映射信息,只会操作一次。⑵处根据文件系统类型获取对应的文件类型映射信息。从这里,可以获知,LiteOS-M 内核只能同时支持一个文件系统,不能只支持 fat 又支持 littlefs。⑶处对应对应的文件系统挂载接口实现挂载操作。其他两个函数同样比较简单,自行阅读代码即可。

int LOS_FsMount(const char *source, const char *target,
                    const char *filesystemtype, unsigned long mountflags,
                    const void *data)
    {
        static int initFlag = 0;

⑴      if (initFlag == 0) {
            InitMountInfo();
            initFlag = 1;
        }

⑵      g_fs = MountFindfs(filesystemtype);
        if (g_fs == NULL) {
            errno = ENODEV;
            return FS_FAILURE;
        }

        if (g_fs->fsMops == NULL || g_fs->fsMops->Mount == NULL) {
            errno = ENOSYS;
            return FS_FAILURE;
        }

⑶      return g_fs->fsMops->Mount(source, target, filesystemtype, mountflags, data);
    }

    int LOS_FsUmount(const char *target)
    {
        if (g_fs == NULL) {
            errno = ENODEV;
            return FS_FAILURE;
        }
        if (g_fs->fsMops == NULL || g_fs->fsMops->Umount == NULL) {
            errno = ENOSYS;
            return FS_FAILURE;
        }
        return g_fs->fsMops->Umount(target);
    }

    int LOS_FsUmount2(const char *target, int flag)
    {
        if (g_fs == NULL) {
            errno = ENODEV;
            return FS_FAILURE;
        }
        if (g_fs->fsMops == NULL || g_fs->fsMops->Umount2 == NULL) {
            errno = ENOSYS;
            return FS_FAILURE;
        }
        return g_fs->fsMops->Umount2(target, flag);
    }

3.2 文件目录操作​

VFS 封装的文件目录操作接口包含 LOS_Open、LOS_Close、LOS_Read、LOS_Write、LOS_Opendir、LOS_Readdir、LOS_Closedir 等等。对具体的文件类型的文件目录操作接口进行封装,代码比较简单,自行阅读即可,部分代码片段如下。

......

int LOS_Unlink(const char *path)
{
    if (g_fs == NULL) {
        errno = ENODEV;
        return FS_FAILURE;
    }
    if (g_fs->fsFops == NULL || g_fs->fsFops->Unlink == NULL) {
        errno = ENOSYS;
        return FS_FAILURE;
    }
    return g_fs->fsFops->Unlink(path);
}

int LOS_Fstat(int fd, struct stat *buf)
{
    if (g_fs == NULL) {
        errno = ENODEV;
        return FS_FAILURE;
    }
    if (g_fs->fsFops == NULL || g_fs->fsFops->Fstat == NULL) {
        errno = ENOSYS;
        return FS_FAILURE;
    }
    return g_fs->fsFops->Fstat(fd, buf);
}

......

int LOS_Mkdir(const char *path, mode_t mode)
{
    if (g_fs == NULL) {
        errno = ENODEV;
        return FS_FAILURE;
    }
    if (g_fs->fsFops == NULL || g_fs->fsFops->Mkdir == NULL) {
        errno = ENOSYS;
        return FS_FAILURE;
    }
    return g_fs->fsFops->Mkdir(path, mode);
}

DIR *LOS_Opendir(const char *dirName)
{
    if (g_fs == NULL) {
        errno = ENODEV;
        return NULL;
    }
    if (g_fs->fsFops == NULL || g_fs->fsFops->Opendir == NULL) {
        errno = ENOSYS;
        return NULL;
    }
    return g_fs->fsFops->Opendir(dirName);
}
......

3.3 随机数文件​

文件 /dev/random 可以用于产生随机数。在开启宏 LOSCFG_RANDOM_DEV 时,LiteOS-M 支持随机数文件。从⑴处可知随机数依赖文件~/openharmony/base/security/huks/interfaces/innerkits/huks_lite/hks_client.h 和 hks_tmp_client.c,这些文件用来产生随机数。⑵处定义的 RANDOM_DEV_FD 和 RANDOM_DEV_PATH 分别是随机数文件的文件描述符和随机数文件路径。

#ifdef LOSCFG_RANDOM_DEV
⑴  #include "hks_client.h"
⑵  #define RANDOM_DEV_FD  CONFIG_NFILE_DESCRIPTORS + CONFIG_NSOCKET_DESCRIPTORS
    #define RANDOM_DEV_PATH  "/dev/random"
    #endif

3.3.1 随机 LOS_Open 和 LOS_Close

该函数打开一个文件,获取文件描述符用于进一步操作。⑴处表示对于随机数文件,打开的标签选项只能支持指定的这些,否则会返回错误码。⑵处获取标准路径,如果获取失败,返回错误码。⑶处比较获取的标准路径是否为 RANDOM_DEV_PATH,在确认是随机数路径时,⑷处开始判断。如果访问模式为只读,返回错误,如果打开选项标签是目录,返回错误。如果不是上述错误情形,返回随机数文件描述符。⑸处如果获取的标准路径为 “/” 或 “/dev”,则根据不同的选项,返回不同的错误码。

int LOS_Open(const char *path, int oflag, ...)
{
#ifdef LOSCFG_RANDOM_DEV
    unsigned flags = O_RDONLY | O_WRONLY | O_RDWR | O_APPEND | O_CREAT | O_LARGEFILE | O_TRUNC | O_EXCL | O_DIRECTORY;
⑴  if ((unsigned)oflag & ~flags) {
        errno = EINVAL;
        return FS_FAILURE;
    }

    size_t pathLen = strlen(path) + 1;
    char *canonicalPath = (char *)malloc(pathLen);
    if (!canonicalPath) {
        errno = ENOMEM;
        return FS_FAILURE;
    }
⑵  if (GetCanonicalPath(NULL, path, canonicalPath, pathLen) == 0) {
        FREE_AND_SET_NULL(canonicalPath);
        errno = ENOMEM;
        return FS_FAILURE;
    }

⑶  if (strcmp(canonicalPath, RANDOM_DEV_PATH) == 0) {
        FREE_AND_SET_NULL(canonicalPath);
⑷      if ((O_ACCMODE & (unsigned)oflag) != O_RDONLY) {
            errno = EPERM;
            return FS_FAILURE;
        }
        if ((unsigned)oflag & O_DIRECTORY) {
            errno = ENOTDIR;
            return FS_FAILURE;
        }
        return RANDOM_DEV_FD;
    }
⑸  if (strcmp(canonicalPath, "/") == 0 || strcmp(canonicalPath, "/dev") == 0) {
        FREE_AND_SET_NULL(canonicalPath);
        if ((unsigned)oflag & O_DIRECTORY) {
            errno = EPERM;
            return FS_FAILURE;
        }
        errno = EISDIR;
        return FS_FAILURE;
    }
    FREE_AND_SET_NULL(canonicalPath);
#endif
......
}

对于随机数文件,关闭时,直接返回成功,不需要额外操作。代码片段如下:

int LOS_Close(int fd)
{
#ifdef LOSCFG_RANDOM_DEV
    if (fd == RANDOM_DEV_FD) {
        return FS_SUCCESS;
    }
#endif
......
}

3.3.2 随机 LOS_Read 和 LOS_Write

随机数文件读写使用 LOS_Read 和 LOS_Write 接口。读取时,⑴处先对传入参数进行校验,如果读取字节数为 0,则返回 0;如果读取的缓存地址为空,返回 - 1;如果读的字节大于 1024,则使用 1024。⑵处调用 hks_generate_random () 产生随机数。由于随机数文件是只读的,如果尝试写入会返回 - 1 错误码。

ssize_t LOS_Read(int fd, void *buf, size_t nbyte)
{
#ifdef LOSCFG_RANDOM_DEV
    if (fd == RANDOM_DEV_FD) {
⑴      if (nbyte == 0) {
            return FS_SUCCESS;
        }
        if (buf == NULL) {
            errno = EINVAL;
            return FS_FAILURE;
        }
        if (nbyte > 1024) { /* 1024, max random_size */
            nbyte = 1024; /* hks_generate_random: random_size must <= 1024 */
        }
        struct hks_blob key = {HKS_BLOB_TYPE_RAW, (uint8_t *)buf, nbyte};
⑵      if (hks_generate_random(&key) != 0) {
            errno = EIO;
            return FS_FAILURE;
        }
        return (ssize_t)nbyte;
    }
#endif
......
}

ssize_t LOS_Write(int fd, const void *buf, size_t nbyte)
{
#ifdef LOSCFG_RANDOM_DEV
    if (fd == RANDOM_DEV_FD) {
        errno = EBADF; /* "/dev/random" is readonly */
        return FS_FAILURE;
    }
#endif
......
}


审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 文件系统
    +关注

    关注

    0

    文章

    273

    浏览量

    19683
  • 源码
    +关注

    关注

    8

    文章

    574

    浏览量

    28592
  • vfs
    vfs
    +关注

    关注

    0

    文章

    13

    浏览量

    5206
  • 鸿蒙
    +关注

    关注

    55

    文章

    1641

    浏览量

    42123
收藏 人收藏

    评论

    相关推荐

    基于RT-Thread快速上手SD NAND 虚拟文件系统

    RT-Thread项目工程,这里基于Draco开发板创建。   完整的RT-thread项目默认是开启虚拟文件系统组件,RT-Thread DFS 组件的主要功能特点有:   为应用程序提供统一的 POSIX
    发表于 12-15 17:29

    获取Linux内核源码的方法

    (ELF1/ELF1S开发板及显示屏)Linux内核是操作系统中最核心的部分,它负责管理计算机硬件资源,并提供对应用程序和其他系统组件的访问接口,控制着计算机的内存、处理器、设备驱动程序和文件
    的头像 发表于 12-13 09:49 301次阅读
    获取Linux<b class='flag-5'>内核</b><b class='flag-5'>源码</b>的方法

    嵌入式学习——ElfBoard ELF1板卡 之文件系统的介绍

    和/media一样,也是一个挂载点,但是专用于挂载临时的设备,例如网络文件系统 /proc 一个虚拟文件系统,为内核提供向进程发送信息的机制。操作系统运行时,进程以及
    发表于 11-24 10:02

    i.MX6ULL——ElfBoard ELF1板卡 之文件系统目录的介绍

    )。 /mnt 和/media一样,也是一个挂载点,但是专用于挂载临时的设备,例如网络文件系统 /proc 一个虚拟文件系统,为内核提供向进程发送信息的机制。操作系统运行时,进程以及
    发表于 11-24 09:59

    Linux的文件系统特点

    ,近期经常被读取和写入,文件系统应该有缓存层。 文件应该用文件夹的形式组织起来,方便管理和查询。 Linux内核要在自己的内存里面维护一套数据结构,来保存哪些
    的头像 发表于 11-09 14:48 501次阅读
    Linux的<b class='flag-5'>文件系统</b>特点

    移植Linux内核ramfs和ramdisk文件系统

    在移植Linux内核早期时,如果flash等存储设备的驱动还没写好,可以将文件系统放到内存中运行。 此时可以使用 ramfs 和 ramdisk ,即将内存的一部分用作文件系统。 ramfs
    的头像 发表于 10-04 14:41 587次阅读
    移植Linux<b class='flag-5'>内核</b>ramfs和ramdisk<b class='flag-5'>文件系统</b>

    谈谈什么是文件系统 文件系统的功能与特点

    文件系统的应用非常广泛,同时种类也是特别的多,并且不同平台也会使用不同性能和特点的文件系统,比如查找效率、数据安全等级等等,如下面windows使用的NTFS:
    发表于 08-30 09:50 1499次阅读
    谈谈什么是<b class='flag-5'>文件系统</b> <b class='flag-5'>文件系统</b>的功能与特点

    Linux虚拟文件系统的基础知识

    虚拟文件系统是一个很庞大的架构,如果要分析的面面俱到,会显得特别复杂而笨拙,让人看着看着,就不知所云了(当然主要还是笔者太菜),所以这篇博客,以 open() 函数为切入点,来试着分析分析
    发表于 08-25 12:17 173次阅读
    Linux<b class='flag-5'>虚拟文件系统</b>的基础知识

    接口在C语言中如何表示?

    接口是最高级的抽象。在linux kernel里面,接口的概念无处不在,像虚拟文件系统VFS),它定义一个文件系统的接口,只要按照这种接口的规范,你可以自己开发一个文件系统挂上去。
    发表于 08-22 12:31 185次阅读

    FATFS文件系统原版文件下载

    FATFS文件系统原版文件下载
    发表于 06-25 09:02 0次下载

    Linux proc文件系统详解

    上一篇:《文件系统有很多,但这几个最为重要》介绍了procfs(进程文件系统的缩写),包含一个伪文件系统(启动时动态生成的文件系统),用于通过内核
    发表于 06-15 11:42 782次阅读

    Linux平台/proc虚拟文件系统详解

    Linux 内核提供了一种通过 /proc 文件系统,在运行时访问内核内部数据结构、改变内核设置的机制。proc文件系统是一个伪
    发表于 06-08 10:49 1086次阅读
    Linux平台/proc<b class='flag-5'>虚拟文件系统</b>详解

    Linux内核中的文件系统断电可靠性测试解析

    提高可靠性最简单的方法就是把文件系统设置为只读状态。即禁止对其中的内容作任何修改。这样,文件系统便不会因写入操作期间发生故障而受损。
    发表于 06-08 09:49 977次阅读
    Linux<b class='flag-5'>内核</b>中的<b class='flag-5'>文件系统</b>断电可靠性测试解析

    Linux系统中根文件系统构建基本方式

    ,以简化Linux的使用。如嵌入式Linux文件系统中通常不会放置内核源码,因而存的 常不会放置内核源码,因而存的 常不会放置
    发表于 05-09 09:30 571次阅读
    Linux<b class='flag-5'>系统</b>中根<b class='flag-5'>文件系统</b>构建基本方式

    在Microchip的PolarFire SoC FPGA上移植NuttX实时操作系统

    NuttX也有许多与Linux并行的子系统。几个示例包括虚拟文件系统VFS)、内存技术设备 (MTD)、音频子系统和支持 USB 复合的 USB
    的头像 发表于 05-06 11:12 1184次阅读