0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

工艺参数对键合金丝质量影响的研究

半导体封装工程师之家 来源:半导体封装工程师之家 作者:半导体封装工程师 2024-02-21 11:50 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

共读好书

王子伊 付明浩 张晓宇 王晶 王代兴 孙浩洋 何钦江

摘要:

金丝键合技术是微电子领域的封装技术,一般采用金线,利用热、压、超声共同作用,完成微电子器件中电路内部连接,即芯片和电路或者引线框架之间的互连。本文在深入了解键合机理后,选用 25μm 金丝,基于正交试验方法,研究键合压力、超声功率、键合时间等参数对楔焊键合及球焊键合后金丝拉力及焊点形貌的影响,根据键合强度拉力值确定键合的最佳工艺参数范围。

1 引言

金丝键合作为集成电路封装过程中的关键工序,用于完成集成电路封装中芯片与基板、基板与壳体间的电气互连。引线键合技术根据键合方法可分为楔形键合和球型键合。球焊键合方向灵活、可靠性高,楔焊键合可实现最小拱弧且单个焊点占用面积小,在集成电路封装过程中均有应用。一个模块中有大量金丝,一根金丝失效都会影响模块甚至整机系统的正常运作,因此,控制并提高键合金丝质量尤为重要。金丝键合失效主要包括:金丝线弧过长引起的金丝塌陷短路、金丝过紧引起的颈缩点断裂、键合参数过大引起的金丝焊点变形量从而引发的断裂、键合参数过小引起的金丝焊点压焊不牢。在实际生产中,键合参数对金丝质量的影响较大,因此,本文在深入了解键合机理后,选用 25μm 金丝,研究超声功率、键合压力、超声时间对金丝拉力及焊点形貌的影响,确定最佳的工艺参数。

2 试验方案

2.1 试验材料的设计和选择

本文选取纯度为 99.99%的 25μm 的金丝作为键合引线材料进行金丝键合,如图 1 所示。

93979bb8-b599-11ee-9b10-92fbcf53809c.png

本文选择芯片焊盘尺寸为 100μm×160μm 的铝焊盘,铝膜厚为 600nm;镀金 2μm 的介质基板为键合板材,研究不同工艺参数对金丝键合质量及一次键合成功率的影响,引线键合示意图如图 2 所示。

93a7577e-b599-11ee-9b10-92fbcf53809c.png

2.2 试验方案

本文采用正交试验方法研究工艺参数对键合金丝质量的影响。选取键合压力、键合时间、超声功率三个工艺参数作为试验对象,每个参数选取 3 个变量,一共九组试验。楔焊键合超声功率选取 16~18W,键合压力选取 14~16g,键合时间选取 60~100ms;球焊键合超声功率选取 30~35μIn,键合时间选取 30~35ms,键合压力选取 25~33g。键合金丝后对金丝焊点形态、金丝强度进行分析。应保证实验前、高温、低温以及高低温冲击后,金丝抗拉强度均大于 5g。键合拉力测试示意图如图 3 所示,A 点为第一键合点脱落,B 点为第一颈缩点断裂,C 点为金丝断裂,D 点为第二颈缩点断裂,E 点为第二键合点脱落,应当根据金丝断裂位置进行相应的工艺参数调整。

93b5d344-b599-11ee-9b10-92fbcf53809c.png

3 金丝键合工艺参数研究

3.1 楔焊键合关键工艺参数研究

影响自动金丝键合质量的关键因素为:形变量,焊接过程中的超声功率和键合时间。为了得到最佳键合工艺参数,本项目采用正交实验,进行了三因素、三水平设计,键合金丝第一焊点参数具体设计方案如表 1 所示。

93bd8bca-b599-11ee-9b10-92fbcf53809c.png

93c72ae0-b599-11ee-9b10-92fbcf53809c.png

设置不同键合工艺参数,制备 9 组键合金丝样品,并将 9 组样品送去进行抗拉强度测试。每个样品对 5根金丝进行测试,金丝抗拉强度及断裂位置如表 2 所示。

9 种不同样品测试结果表明,所测试的金丝抗拉强度最低为 8.85gf,最高为 10.41gf,强度均满足GJB548B—2005 剪切试验要求(大于 3gf),金丝键合质量良好。

93d0c924-b599-11ee-9b10-92fbcf53809c.png

金丝断裂位置均发生在颈缩点处,未出现在第一、第二焊点断裂的情况,说明金丝与芯片、基板形成了良好的冶金结合,键合质量良好。设计的正交试验如表 3 所示。

通过对比各水平条件下极差数据可知:因素 B 形变量的极差 R 大于因素 C 超声功率,大于因素 A 键合压力,这说明在自动金丝键合过程中,对金丝键合第一焊点影响最大的工艺参数是形变量,其次是超声功率,最后是键合时间。最佳的键合工艺参数 A1B3C1,即键合时间为 60ms,形变量 40%,键合压力为 20g。

键合金丝第二焊点参数具体设计方案如表4所示。

93e24230-b599-11ee-9b10-92fbcf53809c.png

93f2ef0e-b599-11ee-9b10-92fbcf53809c.png

设置不同键合工艺参数,制备 9 组键合金丝样品,并将 9 组样品送去进行抗拉强度测试。每个样品对 5根金丝进行测试,金丝抗拉强度及断裂位置如表 5 所示。9 种不同样品测试结果表明,所测试的金丝抗拉强度最 低为 7.98gf , 最 高 为 9.79gf , 强 度 均 满 足GJB548B—2005 剪切试验要求(大于 3gf),金丝键合质量良好。

金丝断裂位置均发生在第二焊点颈缩点处,未出现在第一、第二焊点断裂的情况,说明金丝与芯片、基板形成了良好的冶金结合,键合质量良好。

设计的正交试验如表 6 所示。通过对比各水平条件下极差数据可知:因素 B 形变量的极差 R 大于因素C 超声功率,大于因素 A 键合压力,这说明在自动金丝键合过程中,对金丝键合第一焊点影响最大的工艺参数是形变量,其次是超声功率,最后是键合时间。最佳的键合工艺参数 A3B3C3,即键合时间为 120ms,形变量 40%,键合压力为 22g。

93fd03a4-b599-11ee-9b10-92fbcf53809c.png

94077668-b599-11ee-9b10-92fbcf53809c.png

自动金丝楔焊键合对金丝抗拉强度影响最大的工艺参数为形变量,当键合金丝形变量达到设定值时,继续增大键合时间和超声功率不会增加金丝与芯片或基板的接触面积,即不再影响金丝的抗拉强度。综上,自动金丝楔焊键合的最佳工艺参数如表 7 所示,采用最佳工艺参数进行自动金丝键合,一次键合成功率达到 100%,键合金丝形貌如图 4 所示。

941140d0-b599-11ee-9b10-92fbcf53809c.png

3.2 球焊键合关键工艺参数研究

金丝球焊键合操作方便、灵活,压点面积大、焊接可靠性高,且无方向性,因此深入探讨超声功率、键合时间、键合压力等参数对金丝球焊键合质量的影响十分必要。本试验同样采用三因素三水平 L 9 (3 3 )的正交试验表进行试验。球焊键合金丝第一焊点参数具体设计方案如表 8 所示。

9423343e-b599-11ee-9b10-92fbcf53809c.png

设置不同键合工艺参数,制备 9 组球焊键合金丝样品,并将 9 组样品送去进行抗拉强度测试。每个样品对 5 根金丝进行测试,金丝抗拉强度及断裂位置如表 9 所示。

9433fa80-b599-11ee-9b10-92fbcf53809c.png

9 种不同样品测试结果表明,所测试的金丝抗拉强度 最低 为 5.47gf , 最 高 为 6.81gf ,强 度均 满足GJB548B—2005 剪切试验要求(大于 3gf),金丝键合质量良好。金丝断裂位置发生在第二焊点颈缩点,部分金丝第二焊点发生脱焊,这说明虽然金丝与芯片、基板形成了良好的冶金结合,但是第二焊点为薄弱环节,键合强度偏低。

设计的正交试验如表 10 所示。

943dd866-b599-11ee-9b10-92fbcf53809c.png

通过对比各水平条件下极差数据可知:因素 B 键合压力的极差 R 大于因素 A 超声功率,大于因素 C 键合时间,这说明在自动金丝球焊键合过程中,对金丝键合第一焊点影响最大的工艺参数是键合压力,其次是超声功率,最后是键合时间。最佳的键合工艺参数A1B1C3,即超声功率为 31µIn,键合压力为 32g,键合时间为 39ms。

从表 9 可以看出,金丝键合抗拉强度虽然满足GJB548B—2005 剪切试验要求,但是整体抗拉水平偏低,且第二焊点存在脱焊现象,说明第二焊点为薄弱环节,故需要对第二焊点进行补球加固,提高键合金丝可靠性。

球焊键合金丝补球参数具体设计方案如表 11 所示。

944e60d2-b599-11ee-9b10-92fbcf53809c.png

9 组球焊加固后键合金丝抗拉强度。每个样品对 5根金丝进行测试,金丝抗拉强度及断裂位置如表 12 所示。

945a320e-b599-11ee-9b10-92fbcf53809c.png

9 种不同样品测试结果表明,所测试的金丝抗拉强度最低为 11.11gf,最高为 12.28gf,强度均满足GJB548B—2005 剪切试验要求(大于 3gf),金丝键合质量较高。

金丝断裂位置发生在第一焊点颈缩点、第二焊点颈缩点,未发生第一焊点脱焊以及补球脱焊等情况,这说明补金球参数适当,可将金丝第二颈缩点覆盖住,起到了补球加固的效果。

设计的正交试验如表 13 所示。

946475f2-b599-11ee-9b10-92fbcf53809c.png

通过对比各水平条件下极差数据可知:因素 C 键合时间的极差 R 大于因素 A 超声功率,大于因素 B 键合压力,这说明在自动金丝球焊键合过程中,对金丝键合补球影响最大的工艺参数是键合时间,其次是超声功率,最后是键合压力。最佳的键合工艺参数A1B1C1,即超声功率为 34µIn,键合压力为 38g,键合时间为 29ms。

947307b6-b599-11ee-9b10-92fbcf53809c.png

947dea3c-b599-11ee-9b10-92fbcf53809c.png

在补球过程中,键合时间过长、超声功率过大、键合压力过大均会导致金丝第二焊点颈缩点受到损伤,反而影响补球加固的效果。综上,自动金丝球焊键合的最佳工艺参数如表 14 所示,采用最佳工艺参数进行自动金丝键合,一次键合成功率达到 100%,键合金丝形貌如图 5 所示。

为确保最优的键合工艺参数能够满足产品的批生产要求,在产品装配合格后随机抽取 10 根金丝进行抗拉强度检测,金丝抗拉强度值范围为 9.07~12.21gf。批产试验产品最优键合工艺参数可以满足批产质量要求。

4 结束语

通过设计正交试验,以抗拉强度与断裂位置作为评价标准,研究了金丝楔焊键合及金丝球焊键合不同工艺参数对于金丝抗拉强度的影响,从而确定最优工艺参数。在楔焊键合中,形变量对键合强度影响大于超声功率大于键合时间,最佳工艺参数为键合时间为60ms,形变量 40%,键合压力为 20g,最佳工艺参数为键合时间为 120ms,形变量 40%,键合压力为 22g;在球焊键合中,第一焊点键合压力对键合强度的影响大于超声功率大于键合时间,最佳工艺参数为超声功率为 31µIn,键合压力为 32g,键合时间为 39ms,补球过程中键合时间对键合强度的影响大于超声功率大于键合压力,最佳工艺参数为超声功率为 34µIn,键合压力为 38g,键合时间为 29ms。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 集成电路
    +关注

    关注

    5446

    文章

    12465

    浏览量

    372685
  • 封装
    +关注

    关注

    128

    文章

    9139

    浏览量

    147891
  • 微电子
    +关注

    关注

    18

    文章

    405

    浏览量

    42617
  • 键合
    +关注

    关注

    0

    文章

    87

    浏览量

    8234
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    芯片工艺技术介绍

    在半导体封装工艺中,芯片合(Die Bonding)是指将晶圆芯片固定到封装基板上的关键步骤。工艺可分为传统方法和先进方法:传统方法包括芯片
    的头像 发表于 10-21 17:36 1725次阅读
    芯片<b class='flag-5'>键</b>合<b class='flag-5'>工艺</b>技术介绍

    【新启航】碳化硅外延片 TTV 厚度与生长工艺参数的关联性研究

    作用。深入研究碳化硅外延片 TTV 厚度与生长工艺参数的关联性,有助于优化生长工艺,提升外延片质量,推动碳化硅半导体产业发展。 二、碳化硅
    的头像 发表于 09-18 14:44 559次阅读
    【新启航】碳化硅外延片 TTV 厚度与生长<b class='flag-5'>工艺</b><b class='flag-5'>参数</b>的关联性<b class='flag-5'>研究</b>

    提高合晶圆 TTV 质量的方法

    关键词:合晶圆;TTV 质量;晶圆预处理;工艺;检测机制 一、引言 在半导体制造领域,合晶圆技术广泛应用于三维集成、传感器制造等领域
    的头像 发表于 05-26 09:24 749次阅读
    提高<b class='flag-5'>键</b>合晶圆 TTV <b class='flag-5'>质量</b>的方法

    电机引线螺栓硬钎焊工艺研究

    影响区范围小于50mm,保证了引线螺栓焊接质量符合设计产品的要求。 **纯分享帖,需要者可点击附件免费获取完整资料~~~*附件:电机引线螺栓硬钎焊工艺研究.pdf 【免责声明】本文系网络转载,版权归原作者所有。本文所用视频、图片
    发表于 05-14 16:34

    基于推拉力测试机的化学镀镍钯金电路板金丝合可靠性验证

    W260推拉力测试机,结合破坏性力学测试与高温加速试验,对ENEPIG焊盘的金丝合性能进行全面分析,为行业提供数据支撑和工艺优化方向。 一、测试原理与标准 1、合强度测试原理 破
    的头像 发表于 04-29 10:40 846次阅读
    基于推拉力测试机的化学镀镍钯金电路板<b class='flag-5'>金丝</b><b class='flag-5'>键</b>合可靠性验证

    激光焊接技术在焊接坡莫合金工艺特点

    焊接坡莫合金时,激光焊接机展现出了独特的工艺特点。下面一起来看看激光焊接技术在焊接坡莫合金工艺特点。 激光焊接技术在焊接坡莫合金时的主要
    的头像 发表于 04-15 14:16 564次阅读
    激光焊接技术在焊接坡莫<b class='flag-5'>合金</b>的<b class='flag-5'>工艺</b>特点

    激光锡球焊工艺参数对焊接质量的严格把控

    在电子制造领域,激光锡球焊以其高精度、低热影响等优势备受青睐,而合理设置工艺参数是发挥其优势、提升焊接质量的关键。
    的头像 发表于 03-24 16:02 620次阅读

    电子科技助力铝合金车身点焊工艺创新

    电子科技在铝合金车身点焊工艺中的应用主要体现在以下几个方面: ### 1. 智能化焊接参数控制 传统的焊接参数设置往往依赖于操作者的经验,这不仅效率低下,而且容易因人而异导
    的头像 发表于 03-17 17:20 519次阅读

    金丝合的主要过程和关键参数

    金丝工艺便能与其他耐受温度在300℃以下的微组装工艺相互适配,在高可靠集成电路封装领域得到广泛运用。
    的头像 发表于 03-12 15:28 3236次阅读
    <b class='flag-5'>金丝</b><b class='flag-5'>键</b>合的主要过程和关键<b class='flag-5'>参数</b>

    激光焊接技术在焊接殷瓦合金工艺优势

    的应用。然而,殷瓦合金的高合金含量导致其焊接性能较差,使得殷瓦钢的焊接成为世界上难度最高的焊接技术之一。 激光焊接机在焊接殷瓦合金时,展现出了独特的工艺特点。下面来看看激光焊接技术在焊
    的头像 发表于 03-11 14:56 596次阅读
    激光焊接技术在焊接殷瓦<b class='flag-5'>合金</b>的<b class='flag-5'>工艺</b>优势

    推拉力测试仪:金丝工艺优化的“神器”

    金丝合技术是微电子封装领域中实现芯片与外部电路连接的关键工艺之一。其可靠性直接影响到电子器件的性能和寿命。第二焊点作为金丝合的重要组成
    的头像 发表于 02-22 10:09 1189次阅读
    推拉力测试仪:<b class='flag-5'>金丝</b>球<b class='flag-5'>键</b>合<b class='flag-5'>工艺</b>优化的“神器”

    激光焊接技术在焊接铜镍合金工艺应用

    。激光焊接机以其高能量密度、高精度和适应性强等特点,成为铜镍合金焊接的理想选择。下面就是激光焊接技术在焊接铜镍合金工艺应用。 激光焊接技术利用高能激光束对铜镍合金进行熔化连接,具有能
    的头像 发表于 02-21 16:30 871次阅读
    激光焊接技术在焊接铜镍<b class='flag-5'>合金</b>的<b class='flag-5'>工艺</b>应用

    Phase Lab镍基合金液相粘度数据库:实现可靠粘度参数预测

    重要依据。基于CALPHAD方法构建镍基高温合金液相粘度数据库,对于优化镍基合金的熔炼与凝固工艺具有重要意义,能够有效减少气孔、缩松等缺陷的产生。同时,该数据库还可用于镍基合金增材制造
    的头像 发表于 02-18 11:21 1018次阅读
    Phase Lab镍基<b class='flag-5'>合金</b>液相粘度数据库:实现可靠粘度<b class='flag-5'>参数</b>预测

    基于剪切力测试的DBC铜线工艺优化研究

    中,引线合技术是实现芯片与外部电路连接的重要手段,而合材料的选择和工艺参数的优化则是确保
    的头像 发表于 02-08 10:59 956次阅读
    基于剪切力测试的DBC铜线<b class='flag-5'>键</b>合<b class='flag-5'>工艺</b>优化<b class='flag-5'>研究</b>

    激光焊接技术在焊接镍合金工艺应用

    合金因其高温强度高、抗氧化性优异等特性,在众多工业领域中具有广泛的应用价值。然而,镍合金的焊接却是一项技术难题,传统焊接方法难以获得理想的焊接接头质量。激光焊接技术作为一种高精度、高能量密度的焊接
    的头像 发表于 01-20 15:56 745次阅读
    激光焊接技术在焊接镍<b class='flag-5'>合金</b>的<b class='flag-5'>工艺</b>应用