0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用于可穿戴和可植入生物电子学的可拉伸石墨烯-水凝胶界面

MEMS 来源:MEMS 2023-12-26 09:41 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

可穿戴和可植入生物电子技术能够监测物理、化学以及电生理信号,在人机交互、医疗健康监测、脑机接口、慢性病管理以及药物释放系统等领域具有广泛应用前景。

高性能生物电子器件的构建主要基于柔、软、薄、可拉伸以及生物相容性的导电纳米复合物,并且需与大面积集成制造方法兼容。

多模式激光制造技术集成激光增、等、减材加工形式,凭借高精度、非接触、机理丰富、灵活可控、高效环保、多材料兼容等特点突破传统制造在多任务、多线程、多功能复合加工中的局限,实现跨尺度“控形”与“控性”,为各类生物电子器件的结构-材料-功能一体化制造开辟了新路径。

其中,激光诱导碳化(LIG)技术主要使用激光束对碳含量较高的材料进行定向加热,主要通过光热效应转变为导电碳材料。该技术具有可图案化、设计性强、图案可转印以及可调控的物化特性等优势,已被应用于构建多类生物电子器件。

但是,在实现可拉伸、超薄生物电子集成系统方面,激光诱导碳化技术主要存在两大挑战:

(1) 在转印LIG时,界面机械剥离力限制了弹性体厚度(通常>45 μm)。

(2) LIG与柔弹性聚合物间的杨氏模量差异较大,限制可拉伸本征导电性。

45e99328-a340-11ee-8b88-92fbcf53809c.jpg  

图1:激光诱导可拉伸生物电子界面的设计概念图 近期,浙江大学杨华勇院士团队与药学院顾臻教授团队联合在《Nature Electronics》期刊上发表题为“Stretchable Graphene-Hydrogel Interfaces for Wearable and Implantable Bioelectronics”的研究论文,徐凯臣研究员与顾臻教授为论文通讯作者,浙江大学机械工程学院,流体动力基础件与机电系统全国重点实验室为第一单位。本工作创新点主要包括:

(1)首创激光碳化冷冻转印新工艺,实现在最小 1.5 μm 厚的水凝胶表面的转移,建立LIG在多类水凝胶界面转印的普适性方法。

(2)采用水凝胶作为能量耗散界面与面外电子传输层,诱导贯穿裂纹趋于偏转裂纹,提升LIG本征导电拉伸率约5倍。结合结构设计,导电可拉伸率可达220%(且电阻呈线性变化)。

通过突破上述关键技术,构筑了多功能表皮电子与心脏贴片,实现了体表多模态信号监测以及大鼠心脏电信号的原位监测,观测到大鼠在冠状动脉结扎后的心率失常现象。

465f8272-a340-11ee-8b88-92fbcf53809c.jpg  

图2:激光碳化冷冻转印,包括转印方法、机理以及影响因素。本工作设计了厚度为1.0~1.5 μm的PPH水凝胶膜作为激光诱导多孔碳转印的骨架材料(~10 μm厚的柔弹性介质为支撑层)。以聚乙烯醇(PVA)、植酸(PA)和天然蜂蜜为原料,制备了具有高粘附性、抗菌性、高生物兼容性的PPH水凝胶。通过分子动力学理论计算结合实验,揭示极端低温诱导转印过程中,界面结合能演变机制。系统探索了激光功率密度、PPH层厚度、以及支撑层的杨氏模量对转移效率的影响。

本工作发明了一种在零下196 ℃环境下,将激光诱导多孔碳从聚酰亚胺(PI)基底上剥离转印到以PPH水凝胶为弹性体界面的方法。在极速冷冻界面,低温膨胀的凝胶与多孔碳部分互嵌,同时富含缺陷位点的激光诱导多孔碳与含结晶水的凝胶表面的界面结合作用被明显增强,保证了剥离过程中界面较强的剪切强度。分子动力学理论计算结合实验验证也证实了界面结合能的演变机制。这两种效应均能促进导电图案完整转印,同时保持良好的界面机械稳定性。

浙江大学博士研究生陆雨姚(机械工程学院),杨赓研究员(机械工程学院),王慎强博士(药学院),张宇琪研究员(药学院)为并列第一作者。顾臻教授团队在抗菌、生物兼容性以及动物实验等方面提供了重要支持。柔性电子学家黄维院士对本工作提供了重要指导。本研究由国家自然科学基金、科技创新2030重大项目、国家重点研发计划、浙江省领军型创新创业团队、浙江省尖兵计划等多个项目资助。

46cd73ea-a340-11ee-8b88-92fbcf53809c.jpg

图3:抗菌与生物相容性测试,所提出的PPH水凝胶展示了优异的抗菌性能以及对小鼠伤口的愈合性能,且转移激光诱导碳化基质后,复合物性能几乎不受影响。

473fe52e-a340-11ee-8b88-92fbcf53809c.jpg  

图4:基于激光诱导碳化与超薄PPH水凝胶复合物,系统研究了有无PPH凝胶薄膜的微裂纹与力电响应变化,构建了力敏、湿敏、温度、心电传感器。

4792576e-a340-11ee-8b88-92fbcf53809c.jpg  

图5:基于激光诱导碳化与PPH水凝胶界面的多功能表皮电子,可实时监测呼吸速率、心电、心率、表皮温度与湿度信号。

47dddc70-a340-11ee-8b88-92fbcf53809c.jpg  

图6:植入式贴片应用于监测大鼠心脏电信号,根据大鼠的心脏大小,定制电极阵列,观测到大鼠在冠状动脉结扎后的心率失常现象。







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2573

    文章

    54368

    浏览量

    786031
  • 人机交互
    +关注

    关注

    12

    文章

    1275

    浏览量

    57636
  • 电信号
    +关注

    关注

    1

    文章

    844

    浏览量

    21585
  • 可穿戴电子
    +关注

    关注

    0

    文章

    70

    浏览量

    13828

原文标题:可拉伸石墨烯-水凝胶界面,用于可穿戴和可植入生物电子学

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    中山大学:基于共形生物粘附凝胶的多模态腕带传感系统用于精准实时手语翻译与人机交互

    为了满足可穿戴人机交互(HMI)在健康监测、主动康复及智能交互等领域的需求,研究人员正专注于开发基于软材料的柔性 HMI 设备,以替代传统刚性界面组件,实现高效、连续的人体生物信号采集。这些柔性
    的头像 发表于 11-04 16:58 3180次阅读
    中山大学:基于共形<b class='flag-5'>生物</b>粘附<b class='flag-5'>水</b><b class='flag-5'>凝胶</b>的多模态腕带传感系统<b class='flag-5'>用于</b>精准实时手语翻译与人机交互

    广东理工学院-以色列理工学院:研究一种用于长期便携式健康监测的超薄凝胶电极

    一、摘要 适应的凝胶生物电子设备在早期疾病诊断和个性化医疗中至关重要,能够维持长期不间断的操作。然而,传统的
    的头像 发表于 10-23 19:00 3930次阅读
    广东理工学院-以色列理工学院:研究一种<b class='flag-5'>用于</b>长期便携式健康监测的超薄<b class='flag-5'>水</b><b class='flag-5'>凝胶</b>电极

    安徽大学:基于聚乙烯醇/丝素蛋白/石墨凝胶的柔性传感器,用于先进的可穿戴电子产品等

    and Human-Machine Interaction Applications”的论文,研究提出了一种基于环保型纳米复合材料的离子导电凝胶。该传感材料具备自愈合
    的头像 发表于 09-07 17:46 754次阅读
    安徽大学:基于聚乙烯醇/丝素蛋白/<b class='flag-5'>石墨</b><b class='flag-5'>烯</b><b class='flag-5'>水</b><b class='flag-5'>凝胶</b>的柔性传感器,<b class='flag-5'>用于</b>先进的<b class='flag-5'>可穿戴</b><b class='flag-5'>电子</b>产品等

    可穿戴系列之全息无感化健康管理传感器

    下一代生物传感器总体概述(图1)下一代医疗正通过生物兼容的可穿戴摄入、植入传感器实现无感化
    的头像 发表于 08-18 20:21 6718次阅读
    <b class='flag-5'>可穿戴</b>系列之全息无感化健康管理传感器

    智能网版测试仪应用 | 可拉伸电子器件的丝网印刷

    可穿戴电子设备的快速发展推动了柔性与可拉伸电子技术的革新,其中丝网印刷因低成本、大面积制备优势,成为可拉伸互连件制造的关键技术。光子湾科技的
    的头像 发表于 08-05 17:47 487次阅读
    智能网版测试仪应用 | <b class='flag-5'>可拉伸</b><b class='flag-5'>电子</b>器件的丝网印刷

    国仪电镜助力PANC/T-Fe凝胶在不同环境温度下的微观结构分析

    福州大学赖跃坤教授团队针对可穿戴传感器、软机器人、组织工程和伤口敷料等领域对强粘附性凝胶的迫切需求,开展了创新性研究。目前,界面粘附传感材料普遍存在两大技术瓶颈:一是难以实现粘附与非
    发表于 07-30 13:44

    石墨增强生物凝胶导热和导电性能研究

    域的研究开发、工艺优化与质量监控.石墨增强生物凝胶导热和导电性能研究【1、长春工业大学化学与生命科学学院2、长春工业大学化学工程学院3、吉林省石化资源与
    的头像 发表于 05-21 09:54 405次阅读
    <b class='flag-5'>石墨</b><b class='flag-5'>烯</b>增强<b class='flag-5'>生物</b>基<b class='flag-5'>凝胶</b>导热和导电性能研究

    凝胶拉伸试验机:材料性能的洞察者

    凝胶,作为一种神奇的亲水性聚合物材料,能吸收大量水分,呈现出柔软、透明且富有弹性的凝胶状。因其独特性能,在生物医学、组织工程、药物输送、柔性电子
    的头像 发表于 04-28 10:37 446次阅读
    <b class='flag-5'>水</b><b class='flag-5'>凝胶</b><b class='flag-5'>拉伸</b>试验机:材料性能的洞察者

    EastWave应用:光场与石墨和特异介质相互作用的研究

    图 1-1模型示意图 本案例使用“自动计算透反率模式”研究石墨和特异介质的相互作用,分析透反率在有无石墨存在情况下的变化。光源处于近红外波段。 模型为周期结构,图中只显示了该结构
    发表于 02-21 08:42

    由3D石墨泡沫集成凝胶实现的固有可拉伸运动传感器

    背景介绍 凝胶柔性传感器表现出机械灵活性、形状适应性、制造扩展性和生物相容性,在假肢电子皮肤、异常步态识别、虚拟现实和
    的头像 发表于 02-20 18:12 1612次阅读
    由3D<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>泡沫集成<b class='flag-5'>水</b><b class='flag-5'>凝胶</b>实现的固有<b class='flag-5'>可拉伸</b>运动传感器

    3D石墨泡沫与凝胶集成,打造本质可拉伸运动传感器

    Integrated Hydrogel”的论文,研究提出结合弹性模量为35kPa的柔性凝胶和弹性模量为33kPa的柔性三维石墨泡沫,开发了一种
    的头像 发表于 02-11 13:40 6127次阅读
    3D<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>泡沫与<b class='flag-5'>水</b><b class='flag-5'>凝胶</b>集成,打造本质<b class='flag-5'>可拉伸</b>运动传感器

    石墨的基本特性‌,制备方法‌和应用领域

    的方式键合形成单层六边形蜂窝晶格。它具有出色的导电性、导热性和机械强度,这些特性使得石墨在多个领域具有广泛的应用前景。 ‌石墨的制备方法‌: 近年来,科学家们研发出了多种
    的头像 发表于 01-14 11:02 1321次阅读

    用于柔性电子电路的导电材料介绍

    随着物联网与可穿戴技术的发展,柔性电子器件已成为未来电子器件发展的主流趋势。其中,以柔性聚合物为衬底,以金属薄膜、石墨、导电墨水等导电材料
    的头像 发表于 12-25 10:45 3010次阅读

    石墨材料如何推动量产芯片的新时代?

    及其二维同类材料的未来又将如何?石墨电子学的初期2004年,康斯坦丁·诺沃塞洛夫和安德烈·盖姆在曼彻斯特大学首次分离出石墨
    的头像 发表于 12-25 10:42 1452次阅读
    <b class='flag-5'>石墨</b><b class='flag-5'>烯</b>材料如何推动量产芯片的新时代?

    北京化工大学,中国石化北京化工研究院:一种用于柔性应变传感器的高拉伸、自愈、自粘聚丙烯酸/壳聚糖多

    背景介绍 柔性应变传感器因其在人体运动监测和健康诊断分析、软机器人、人工智能设备和电子皮肤。可拉伸导电凝胶因其优异的柔韧性和对变形的高灵敏度,通常被视为柔性应变传感器的最佳候选者之一
    的头像 发表于 12-21 15:27 1435次阅读
    北京化工大学,中国石化北京化工研究院:一种<b class='flag-5'>用于</b>柔性应变传感器的高<b class='flag-5'>拉伸</b>、自愈、自粘聚丙烯酸/壳聚糖多