0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

新火种AI|比尔盖茨表态:生成式AI已成过去接下来是可解释AI的天下

新火种 来源:芯晶图电子 作者:芯晶图电子 2023-12-06 10:36 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

作者:小岩

编辑:彩云

根据财联社消息,11月28日,比尔·盖茨针对AI未来的发展趋势发表了自己的看法。他认为,当下生成式AI的发展已经达到了极限,很难再有突破性的进展。下一个AI发展的赛道,很可能是可解释AI。比尔.盖茨预测,未来10年(2030年-2039年),AI领域的主角将成为可解释AI。


大部分人预判:GPT-5将明显优于GPT-4,成为生成式AI领域天花板。

尽管OpenAI还没有对外界公布GPT-5的确切上线时间,甚至还曾遭到马斯克等人的反对,被其“联名上书”,认为“GPT -5不应该问世”。但有一点毋庸置疑,如今的大模型GPT-4已经达到了行业领先的水准,众人难望其项背。而它距离上一代的GPT-3.5上线,只经历了很短的时间,所以,我们有理由相信,一旦GPT-5成功面世,它的优势将明显大于GPT。这也是比尔.盖茨认为生成式AI再难有突破的重要原因。

当然不可否认,生成式AI公司在最近取得了飞速发展。根据PitchBook为彭博社收集的数据,仅第3季度,全球AI公司的融资价值同比增长27 %,达到179亿美元。这表明了投资者对于AI技术,特别是当下发展正夯的生成式AI,持有相信和乐观态度。而且,这种“一片向好”的态势不光出现在国际上,中国自己的生成式AI行业也在这一年得到了迅速发展,这其中涵盖了语言模型,图像生成,文学创作,音乐创作,游戏开发等多个领域。


随着大模型在AI领域取得了重大突破,未来算力将变得更加廉价,也会在多个领域取得显著成果,从而推动国内的产业升级和创新发展。当然,在这个过程中,大型模型会逐渐减少,应用则会愈发增多。

不过,各大企业在享受AI飞速发展的红利的同时,也不得不面对激烈的市场竞争。为了在市场上分得一杯羹,各企业倾向通过横向并购的方式来扩大市场份额,从而提升地位。而AI大模型的研发,数据收集,数据验证也需要有大量的资金来做支撑。此时,就要考验企业是否具有“钞能力”了。

可解释AI即将登场!它为何有可能引领下一个AI风潮?

那么,为什么可解释AI会备受比尔.盖茨的推崇?

在人类历史上,技术进步,生产关系逻辑,伦理法规的发展是动态演进的。当一种新的技术在实验室获得突破后,它所能带来的价值生产方式势必会对商品形态和生产关系等带来冲击。当新技术带来的价值被认可,商业逻辑会逐步形成,同时适配全新的伦理法规。

近10年来,借由算力与数据规模的性价比突破临界点,以深度神经网络为代表的联结主义模型架构及统计学习范式(简称深度学习)在特征表征能力上取得了跨越级别的突破,大大推动了人工智能的发展,在很多场景中达到令人难以置信的效果(譬如人脸识别准确率达到97 %以上;谷歌智能语音助手的回答正确率高达90 %以上等,都是典型案例) 。


不过,当学习不断深入,问题也随之产生。当“深度学习商业化运用”触及到某些对技术敏感,或者与人的生存和安全关系紧密的领域时,诸如自动驾驶,金融,医疗和司法等高风险应用场景,原有的商业逻辑在进行技术更替的过程中就会遇到阻力,从而导致商业化速度的减缓甚至失败。

究其原因,是因为这些敏感领域会涉及到社会道德和伦理法规的问题。对于这些,我们人类可以在第一时间给予清晰的分辨,溯源和问责。可这些深度学习的商业体,从本质上说,就是一个黑盒,无法从模型的结构或权重中获取模型行为的任何信息,从而导致AI在业务应用中遇到技术和结构上的困难。

让我们举2个例子来进行一下说明。譬如在金融风控的场景里,通过深度学习,模型识别出来小部分用户有欺诈嫌疑,但是业务部门不敢直接使用这个结果进行处理。因为整个业务部门都不知道结果是如何得来的,并且无法判断得出的结果是否正确,整个过程也都缺乏明确的证据。再比如说在医疗使用场景里,深度学习模型根据患者的检测数据,判断患者有肺结核。但是医生不知道诊断结果是怎么来的,不敢直接采用,只能根据自己的经验,仔细查看相关检测数据,给出自己的判断。

wKgaomVv3hGAdgVKAASF7DMcNNI937.png


由此可见,“黑盒”的形态会严重影响模型在实际场景的应用和推广。要解决模型的这些问题,就需要打开黑盒模型,透明化模型构建过程和推理机理,而可解释AI就是实现模型透明化的有效技术。

可解释AI:一套面向机器学习(主要是深度神经网络)技术合集。

所谓可解释AI,英文是explainable AI(XAI)。目前,无论学术界还是工业界,对于可解释AI都没有一个统一的定义。我们在这里为大家介绍3个广为流行的解释。

第一个解释,是希望寻求对模型工作机理的直接理解,打破人工智能的黑盒子。第二个解释,是为AI算法所做出的决策提供人类可读的以及可理解的解释。都三个解释,是确保人类可以轻松理解和信任人工智能代理做出的决策的一组方法。

由此可见,对于黑盒模型的理解,是可解释AI的关键。

MindSpore团队根据自身的实践经验和理解,将可解释AI定义为:一套面向机器学习(主要是深度神经网络)的技术合集,包括可视化,数据挖掘,逻辑推理,知识图谱等。

有了可解释AI的介入,用户就可以知道AI系统为什么要这样做,也知道AI系统为什么不这样做;可以知道AI系统什么时候可以成功,什么时候失败;可以知道什么时候可以信任AI系统;更可以知道AI系统为什么做错了。

目前,OpenAI的产品还没有办法实现完全盈利。本身ChatGPT并不做商业用途,而且在运营过程中,需要应对各项成本支出(培训,微调,人员工资等),再加上GPT-5的训练时间极有可能拉长,OpenAI未来要面临的挑战异常严峻。

此时,如果能跳脱出生成式AI的圈子,另辟蹊径,进入下一个发展阶段,未尝不是一个适合的出路。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    89

    文章

    38090

    浏览量

    296529
  • 人工智能
    +关注

    关注

    1813

    文章

    49734

    浏览量

    261490
  • GPT
    GPT
    +关注

    关注

    0

    文章

    368

    浏览量

    16713
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123900
  • OpenAI
    +关注

    关注

    9

    文章

    1238

    浏览量

    9813
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    AI模型的配置AI模型该怎么做?

    STM32可以跑AI,这个AI模型怎么搞,知识盲区
    发表于 10-14 07:14

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI芯片到AGI芯片

    解决人类智能无法解决的复杂问题。实现AGI的AI相关研究机构和企业的主要目标。 一、生成AI点燃AGI之火 CHatGPT就是已经取得成功的生成
    发表于 09-18 15:31

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的科学应用

    是一种快速反应能力,是直接的感知;灵感是一种通过思考和探索获得的创造性想法,是一种创意。 AI怎么模拟直觉与灵感呢?四、AI代替人类的假说 这可能吗? 用机器来生成假说: 1、直接生成
    发表于 09-17 11:45

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI芯片的需求和挑战

    当今社会,AI已经发展很迅速了,但是你了解AI的发展历程吗?本章作者将为我们打开AI的发展历程以及需求和挑战的面纱。 从2017年开始生成
    发表于 09-12 16:07

    【「AI芯片:科技探索与AGI愿景」阅读体验】+可期之变:从AI硬件到AI湿件

    通常情况下,半导体芯片的制造过程是经过光刻、蒸发、扩散、离子注入等物理方法来实现晶体管等元器件的生成和互连。芯片是被封装在一个带有大量引脚、不断耗电和发热的方形硬壳中,这与大脑的结构沿着完全
    发表于 09-06 19:12

    智能体化AI生成AI的区别

    生成 AI 的核心是“生成内容” —— 比如用大模型写报告,是对输入指令的被动响应。而智能体化 AI(Agentic
    的头像 发表于 08-25 17:24 1210次阅读

    【书籍评测活动NO.64】AI芯片,从过去走向未来:《AI芯片:科技探索与AGI愿景》

    创新、应用创新、系统创新五个部分,接下来一一解读。 算法创新 在深度学习AI芯片的创新上,书中围绕大模型与Transformer算法的算力需求,提出了一系列架构与方法创新,包括存内计算技术、基于开源
    发表于 07-28 13:54

    Banana Pi 发布 BPI-AI2N & BPI-AI2N Carrier,助力 AI 计算与嵌入开发

    RZ/V2N——近期在嵌入世界2025上新发布,为 AI 计算、嵌入系统及工自动化提供强大支持。这款全新的计算平台旨在满足开发者和企业用户对高性能、低功耗和灵活扩展的需求。 []() 领先的计算
    发表于 03-19 17:54

    AI Agent 应用与项目实战》----- 学习如何开发视频应用

    用户的视频生成请求和展示生成的视频结果。 将前端界面与语聚AI平台中的AI助手进行集成,确保前端能够正确地调用AI助手的功能并接收返回的视频
    发表于 03-05 19:52

    聚云科技荣获亚马逊云科技生成AI能力认证

    助力企业加速生成AI应用落地 北京2025年2月14日 /美通社/ -- 云管理服务提供商聚云科技获得亚马逊云科技生成
    的头像 发表于 02-14 16:07 699次阅读

    聚云科技荣获亚马逊云科技生成AI能力认证 助力企业加速生成AI应用落地

    北京 ——2025 年 2 月 14 日 云管理服务提供商聚云科技获得亚马逊云科技生成AI能力认证,利用亚马逊云科技全托管的生成
    发表于 02-14 13:41 323次阅读

    AI智能云平台的优势

    当今,AI智能云平台,正以其独特的优势,引领着技术革新和业务转型的新篇章。接下来AI部落小编为大家分享AI智能云平台的优势。
    的头像 发表于 02-10 10:55 683次阅读

    生成AI工具好用吗

    当下,生成AI工具正以其强大的内容生成能力,为用户带来了前所未有的便捷与创新。那么,生成
    的头像 发表于 01-17 09:54 816次阅读

    国内生成AI备案数量突破300款

    截至2024年底,我国生成人工智能服务领域取得了显著进展,国家互联网信息办公室备案的生成AI服务总数已达到302款,标志着该领域正以前所
    的头像 发表于 01-09 11:14 1141次阅读

    Google两款先进生成AI模型登陆Vertex AI平台

    生成 AI 正在引领商业增长与转型。在已经将生成 AI 部署到生产环境的企业中,有86%的企
    的头像 发表于 12-30 09:56 978次阅读