0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

调节用于高性能水系锌离子电池的多金属离子溶剂化结构

清新电源 来源:水系储能 2023-12-04 09:52 次阅读

研究背景

由于在镀锌/剥锌过程中不可避免地在锌负极表面形成枝晶,大多数水系锌离子电池(AZIBs)会出现严重的容量衰退和电池失效。锌负极的热力学不稳定性导致的腐蚀和析氢反应(HER)会进一步加剧不受控制的枝晶生长,这使问题变得更加复杂。因此,枝晶抑制已成为延长AZIB寿命的重大挑战。从本质上讲,上述原因可以归结为界面附近的不均匀电场导致锌优先在尖端沉积。为了解决这个问题,使用额外的低氧化还原电位阳离子的静电屏蔽已成为一种强大、低成本、简单和有效的方法。目前已经研究并报道了Ce3+、La3+、Mg2+、Li+等阳离子对树枝晶生长的抑制作用。然而,现有的静电屏蔽模型并不能一致准确地预测实验结果。一些电荷数较高的阳离子在促进均匀镀锌和抑制枝晶生长方面是无效的。这一现象强调了对额外阳离子特征的详细研究的必要性,特别是它们的溶剂化壳层,这在以前的报道中被忽视了。一方面,Na+的离子半径通常为0.98-1.07 Å,而水合钠离子的半径则是Na+的两倍多,为2.40 - 2.50 Å。这种尺寸上的差异对于静电屏蔽模型是重要的,因为它会影响空间位阻。另一方面,溶剂化壳层中配位分子的交换行为(溶剂化分子在溶剂化壳层和体相溶剂中交换)不是静态的,需要仔细考虑,因为它在一定程度上决定了静电屏蔽的有效性。配位分子的更快的交换速率,即更高的交换常数kex,增加了Zn2+在相对靠近阳离子的地方穿越的可能性。在这种情况下,单独的库仑力不足以将Zn2+从枝晶推离更远的距离,导致枝晶继续生长。

8ba1d6a4-9167-11ee-939d-92fbcf53809c.png

研究内容

为此,西安交通大学许鑫研究员&成永红教授&王建华教授团队提出将金属离子概念扩展到静电屏蔽阳离子,采用乙二胺四乙酸(EDTA)同时修饰电解液中的两个阳离子(Zn2+和Na+),突破了传统只考虑Zn2+溶剂化壳层的概念。电解液以2 M ZnSO4和0.2 M Na2SO4为电解质,0.04 M EDTA为配体添加剂(为简便起见,记为Zn2Na0.2E0.04)配制。复合电解液改善了静电屏蔽,实现了极有限的枝晶生长和高循环稳定性。与传统电解液(2 M ZnSO4,记为Zn2)相比,Zn2Na0.2E0.04锌负极在5 mA cm−2的高电流密度下具有超过4600 h的高稳定性。最后,NH4V4O10(NVO)和MnO2正极与复合电解液的相容性也表现出相对显著的容量保留。本工作通过将EDTA与Na+解耦,建立相应的对照实验组,广泛调查和研究了EDTA与Na+的个体效应,以及二者共存所产生的变化。最终为复合电解液的发展提供了一个新的视角,初步证明了阳离子溶剂化壳在有效静电屏蔽中的重要性。

其成果以题为“Tailoringthe solvation shells of dual metal ions for high-performance aqueous zinc ionbatteries”在国际知名期刊Chemical EngineeringJournal上发表。西安交通大学许鑫研究员、硕士生冯翔、博士生李明燕为本文的共同第一作者,通讯作者为许鑫研究员、王建华教授。

研究亮点

在电解液设计过程中考虑了静电屏蔽阳离子的溶剂化壳。

采用Zn2Na0.2E0.04电解液制备的锌/锌对称电池在5 mA cm−2的高电流密度下具有超过4600 h的高稳定性。

该电解液Zn2Na0.2E0.04与正极材料NH4V4O10和MnO2具有良好的相容性。

图文导读

8ba567c4-9167-11ee-939d-92fbcf53809c.png

图1. a)不同络合物(Na+-EDTA,Zn2+-EDTA, Na+-H2O, Zn2+-H2O)的结合能。(b) 1H和(c) 13C在不同环境下的液态核磁共振谱。

▲在低氧化还原电位阳离子中,Na+表现出较高的配位水交换率,表明它们不能形成刚性水化壳。以前的研究已经引入钠离子作为静电屏蔽阳离子来减缓枝晶生长,但效果有限通常归因于较低的电荷数。为了研究静电屏蔽阳离子的溶剂化壳的作用,引入EDTA添加剂,研究了相同电荷数的Na+的溶剂化壳的调节对枝晶的抑制作用。EDTA是一种有效的配体添加剂,用于调节金属离子的配位分子,在先前的AZIB电解液优化工作中已经进行了研究。密度泛函理论(DFT)结果表明,EDTA分子对金属离子(Zn2+和Na+)的结合能都比水分子低,表明其结合倾向更强。

8bbe7f5c-9167-11ee-939d-92fbcf53809c.png

图2. a)四种电解质Zn//Zn对称电池累积镀试验(Zn对电极总容量约114.8 mAh)。b) Na+-5H2O和Na+-4H2O-1EDTA的HOMO和LUMO能级。(c)成核过电位与(d)四种电解液对应值的比较。e)施加电位为- 150 mV (vs Zn2+/Zn)时,四种电解液中Zn电极的计时电流法测试结果。f)四种电解液Zn//Zn对称电池的EIS图。g) EDTA调节的Stern层示意图。h)锌金属板、EDTA粉末、锌金属板在Zn2Na0.2E0.15中浸泡后的拉曼光谱。

▲为了进一步研究Na2SO4和EDTA混合添加剂对Zn沉积行为的影响,我们在2 mA cm−2的电流下进行了成核过电位测试。如图所示,添加单一的Na2SO4添加剂降低了Zn的成核过电位,我们推测这是由于其作为导电盐的作用,提高了电解质的电导率(Zn2Na0.2)。同时,EDTA作为一种经典的螯合剂,延缓了Zn的脱溶过程,从而显著提高了成核过电位。有趣的是,两种添加剂的共同加入导致更高的成核过电位,这再次证明了Na+-EDTA对Zn沉积的显著影响。对比不同电解质中Zn2+的脱溶活化能可知Zn2Na0.2E0.04电解质中Zn2+的脱溶活化能较高,为10.95 kJ/mol,高于Zn2电解质中的8.64 kJ/mol。经典成核理论认为,Zn2Na0.2E0.04较高的成核过电位表明它有利于形成更小、更致密的Zn核。

此外,随后在-150 mV的过电位下进行计时电流(CA)表征,以检查Zn沉积行为。在Zn2电解液中,施加过电位50 s后,电流密度达到约- 32 mA cm - 2的稳态值,表明Zn2+的二维扩散延长,形成了更大的Zn核。相反,Zn2E0.04和Zn2Na0.2E0.04电解质没有表现出明显的二维(2D)扩散,这可能是由于锌沉积过程中添加剂分子在电极表面的强吸附,阻碍了Zn2+在表面的二维扩散。

8bd11810-9167-11ee-939d-92fbcf53809c.png

图3. 铜箔在(a)Zn2电解液和(b) Zn2Na0.2E0.04电解液中循环300s (10 mA cm−2)后的SEM图像。c)锌电极在5 mA cm - 2和1 mAh cm - 2下在4种电解液中循环20次后的SEM图像。

▲利用扫描电子显微镜(SEM)观察后循环电池电极表面有助于更好地了解改性电解质对锌沉积行为的影响。图3a和3b显示了在相同的循环条件下(10mA cm−2,300 s),不同电解液(Zn2和Zn2Na0.2E0.04),铜箔衬底上的锌沉积形貌明显不同。可以观察到,在Zn2电解液中的Cu箔衬底表面分散着不同尺寸的球形Zn金属。这些球形锌金属结构本质上是由单个锌片聚集形成的(图4a内图)。然而,在Zn2Na0.2E0.04电解液中电沉积的铜箔衬底表面没有出现大尺寸的锌金属,只有纳米级的锌片状存在(图3b内图)。从SEM图像可以看出,在四种电解质中,Zn2电解液表现出最不理想的沉积形态,特别是较大尺寸的锌片和多孔结构(图3c)。受益于静电屏蔽效应,Na+的引入减小了锌片的尺寸,使其更加致密。然而,这样的优化水平并不令人满意,由于锌负极氢的析出造成结构损伤,衬底上出现了明显的裂纹。Zn2Na0.2E0.04电解质下的电极形貌与其他三种电解质有显著差异。EDTA进入Na+的溶剂化壳层后,静电屏蔽作用更加明显,导致Zn沉积平坦,对枝晶生长有较强的抑制作用。

8bd63390-9167-11ee-939d-92fbcf53809c.png

图4. 电池在Zn2和Zn2Na0.2E0.04电解液中的电化学性能。a)在不同电解液(5 mA cm−2,1 mAh cm−2)的Zn//Zn对称电池中进行长期恒电流镀锌/剥离。b) Cu//Zn半电池的库仑效率测量。c) NVO//Zn电池在不同电流密度下的速率性能。d) NVO//Zn电池在1 A g−1电流密度下的长期循环稳定性和效率。e)不同电流密度下MnO2//Zn电池的倍率性能及相应的放电/充电曲线。g) 2 A g−1电流密度下MnO2//Zn电池的长期循环稳定性和效率。(h) MnO2//Zn软包电池的应用和(i)长期循环性能。这里使用的N/P比控制在3.2。

▲对称电池在5 mA cm−2电流密度下的长期性能进行了研究(图4a)。使用Zn2Na0.2E0.04电解液的对称电池获得了令人印象深刻的4600小时的长循环寿命,而原始Zn2电解液只能确保对称电池稳定循环约100小时。如图4b所示,在Zn2Na2E0.04电解质中测试的Cu//Zn半电池在150次循环中平均库仑效率为99.53%,电压分布稳定。相比于Zn2电解质,Zn2Na2E0.04在Cu// Zn半电池测试中表现出更好的锌镀/剥离可逆性,这可能是由于EDTA分子部分进入Zn的溶剂化壳层或吸附在电极上,抑制了相关的副反应。在较低的测试电流密度和容量条件下,使用Zn2Na0.2E0.04电解质的Zn//Cu电池具有较长的循环寿命。然而,目前优化效果还不是很显著,这可能是Zn2Na0.2E0.04电解液下一步需要改进的一个方面。

使用Zn2Na0.2E0.04电解液的MnO2//Zn全电池可以连续循环7000次,容量保持在100 mAh g−1左右,容量衰减很小(图4g)。结果表明,在相对较低的N/P比(~3.12)下,采用Zn2Na2E0.04电解液制备的MnO2//Zn电池的循环寿命可达150次。MnO2正极容量持续退化的一个可能原因是形成了不可逆的ZnMn2O4相。这种非活性相在电极表面的形成使得活性MnO2无法参与反应,导致容量明显衰减。鉴于EDTA分子对Mn2+的螯合亲和力高于Zn2+,EDTA有望在一定程度上阻碍ZnMn2O4的形成反应。

研究总结

综上所述,我们基于研究静电屏蔽阳离子的溶剂化壳层的新视角,设计了一种含有混合添加剂的水系电解液,可以调节金属离子(Na+和Zn2+)在电解液环境中的溶剂化壳层。通过为Na+创造更稳定的溶剂化壳层,成功实现了更强的静电屏蔽效应,有效抑制了Zn枝晶的快速生长。即使在5 mA cm−2的高电流密度下,单向沉积约114.8 mAh的Zn也不会引起由枝晶生长引起的隔膜短路。另一方面,EDTA分子对EDL和Zn2+的溶剂化壳层的调节也有效地减轻了副反应。通过这种协同作用,最终通过对称电池、Cu//Zn半电池、NVO//Zn和MnO2//Zn全电池获得了稳定的AZIB。提出的增强静电屏蔽效应的机理为设计先进的水溶液电解质提供了新的视角。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锌电池
    +关注

    关注

    0

    文章

    35

    浏览量

    7691
  • 电解液
    +关注

    关注

    10

    文章

    789

    浏览量

    22715
  • DFT
    DFT
    +关注

    关注

    2

    文章

    219

    浏览量

    22466

原文标题:西安交通大学许鑫研究员&成永红教授&王建华教授团队CEJ:调节用于高性能水系锌离子电池的多金属离子溶剂化结构

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    溶剂化少层碳界面实现硬碳负极的高首效和稳定循环

    离子电池碳基负极面临着首次库伦效率低和循环稳定性差的问题,目前主流的解决方案是通过调节电解液的溶剂结构,来
    的头像 发表于 01-26 09:21 377次阅读
    弱<b class='flag-5'>溶剂</b>化少层碳界面实现硬碳负极的高首效和稳定循环

    分子筛电解质膜助力超长寿命锌离子电池

    水系离子电池(AZIBs)具有成本低、不易燃烧的锌金属和水电解质等优点。
    的头像 发表于 12-21 09:27 237次阅读
    分子筛电解质膜助力超长寿命锌<b class='flag-5'>离子</b><b class='flag-5'>电池</b>

    离子-溶剂相互作用的见解

    近日,马里兰大学的王春生教授,Jijian Xu与香港城市大学的Anh T. Ngo等人在双(3-氟丙基)醚(BFPE)的弱Li+阳离子溶剂化溶剂中系统地检测了双(三氟甲磺酰)亚胺(TFSI)、双(氟磺酰)亚胺(FSI)和衍生的不对称(氟磺酰)(三氟甲磺酰)亚胺(FTFS
    的头像 发表于 12-04 09:19 557次阅读
    阴<b class='flag-5'>离子</b>-<b class='flag-5'>溶剂</b>相互作用的见解

    过渡金属钒酸盐用于离子电池

    五氧化二钒(V2O5)因其丰富的价态、层状结构和较高的理论容量而被广泛应用于金属离子电池正极材料,但其较低的电导率和钒在循环过程的溶解导致其
    的头像 发表于 11-07 09:41 399次阅读
    过渡<b class='flag-5'>金属</b>钒酸盐<b class='flag-5'>用于</b>钙<b class='flag-5'>离子</b><b class='flag-5'>电池</b>

    锰基电极材料在水系离子电池中的研究进展

    水系离子电池由于具有成本低、安全性高、环保、资源丰富等优点,在大规模储能领域展现了广阔的应用前景。
    发表于 09-11 09:22 821次阅读
    锰基电极材料在<b class='flag-5'>水系</b>钠<b class='flag-5'>离子</b><b class='flag-5'>电池</b>中的研究进展

    合理设计双相CaV2O6/NaV6O15正极材料实现长寿命水系离子电池

    可充电水系离子电池具有成本低、安全性高和环境友好等特点。它们有望在电网调节、风能和家庭储能等储能系统中实现快速发展。
    发表于 08-29 09:04 253次阅读
    合理设计双相CaV2O6/NaV6O15正极材料实现长寿命<b class='flag-5'>水系</b>锌<b class='flag-5'>离子</b><b class='flag-5'>电池</b>

    胶粘剂对锂离子电池的影响大吗

    离子电池中对胶粘剂要求不同于普通的胶粘剂,主要包括:(1)电化学稳定性好;(2)耐电解质腐蚀;(3)在一定的溶剂中溶解性好;(4)对金属有良好的粘接性能;(5)有较好的柔软性。
    发表于 08-22 09:38 467次阅读

    离子液体基电解液在非水系水系金属电池中的研究进展

    因其高能量密度,非水系金属电池(LMBs)和水系金属电池(ZMBs)有望成为下一代二次
    的头像 发表于 08-17 09:26 767次阅读
    <b class='flag-5'>离子</b>液体基电解液在非<b class='flag-5'>水系</b>和<b class='flag-5'>水系</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>中的研究进展

    金属电池和锂离子电池组 UN38.3实验程序

    CopyrightUnitedNations,2009.Allrightsreserved38.3金属电池和锂离子电池组38.3.1目的本节将介绍对金属锂和锂
    发表于 07-26 16:00 0次下载

    离子电池和干电池的差别,锂离子电池和干电池哪个好

    本文详解锂离子电池和干电池有什么差别?目前,电池范畴中,不同类别的电池正在猛烈竞争。电池基本上有分可以充电(也是所谓的湿
    的头像 发表于 07-12 18:07 2761次阅读
    锂<b class='flag-5'>离子电池</b>和干<b class='flag-5'>电池</b>的差别,锂<b class='flag-5'>离子电池</b>和干<b class='flag-5'>电池</b>哪个好

    金属离子与质子:跟踪插入到水系电池阴极氧化物的电荷载流子

    水系电解液中的质子可以作为水系可充电电池中除主载体阳离子之外的另一种类型的电荷载体用于插入/萃取。
    的头像 发表于 07-07 09:48 549次阅读
    <b class='flag-5'>金属</b><b class='flag-5'>离子</b>与质子:跟踪插入到<b class='flag-5'>水系</b><b class='flag-5'>电池</b>阴极氧化物的电荷载流子

    溶剂分子特殊的络合方式,调控阴离子溶剂化结构

    过去数十年的商业化,锂离子电池(LIBs)取得了长足发展,已然接近其理论能量密度的极限,促进了锂金属化学的复兴。
    的头像 发表于 06-14 09:23 1228次阅读
    单<b class='flag-5'>溶剂</b>分子特殊的络合方式,调控阴<b class='flag-5'>离子溶剂化</b><b class='flag-5'>结构</b>

    用于离子电池溶剂型盐电解质

    传统锂离子电池 (LIB) 中使用的关键矿物(Li、Ni 和 Co)供应紧张且成本高昂,这促使人们对非锂电池化学物质的兴趣与日俱增。
    的头像 发表于 06-11 10:28 610次阅读
    <b class='flag-5'>用于</b>氟<b class='flag-5'>离子</b><b class='flag-5'>电池</b>的<b class='flag-5'>溶剂</b>型盐电解质

    缺陷调节金属氧化物正极以显著改善柔性水系离子电池性能

    便携式电子设备的快速发展导致了对轻便、灵活和通用便携式能量存储解决方案的需求。水系离子电池(AZIB)作为一种更安全、更环保的锂离子电池替代品而受到广泛的关注。
    的头像 发表于 05-25 18:18 1462次阅读
    缺陷<b class='flag-5'>调节</b>双<b class='flag-5'>金属</b>氧化物正极以显著改善柔性<b class='flag-5'>水系</b>锌<b class='flag-5'>离子</b><b class='flag-5'>电池</b><b class='flag-5'>性能</b>

    调节水中O-H键的溶剂化设计实现高度可逆水系离子电池

    近年来,锌离子电池的发展备受关注。水系离子电池面临的挑战包括电化学稳定窗口窄、锌电极腐蚀和枝晶生长、工作温区窄以及正极材料
    的头像 发表于 05-16 09:09 1007次阅读
    <b class='flag-5'>调节</b>水中O-H键的<b class='flag-5'>溶剂</b>化设计实现高度可逆<b class='flag-5'>水系</b>锌<b class='flag-5'>离子</b><b class='flag-5'>电池</b>