0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

HUAWEI DATS 3.0动态自适应扭矩控制系统

汽车电子设计 来源:芝能科技出品 2023-11-30 16:25 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

相较于传统燃油车,新能源车的动力响应更为迅捷。然而,由于新能源车在动能回收过程中存在的问题,如路面波动导致车轮腾空等,扭矩调整通常跟不上响应速度。这不仅会导致车辆晃动感增加,还可能加剧驾乘人员的不适感。HUAWEI DATS3.0动态自适应扭矩系统的引入旨在通过扭矩的精准控制来缓解这一问题。HUAWEI DATS3.0包含了三大子技术

9bad5cf6-8f16-11ee-939d-92fbcf53809c.png

9bec753a-8f16-11ee-939d-92fbcf53809c.png

9bf2ce08-8f16-11ee-939d-92fbcf53809c.png

一) 扭矩矢量控制(TVC)- Torque Vector Control

TVC技术通过动态分配前后轴扭矩,调节车辆的横摆特性,提升转向灵敏度,改善驾控感受。系统通过传感器对路面进行实时扫描,判断车辆是否出现转向不足的情况,通过制动系统和电子控制系统控制差速器齿轮,使引擎动力更合理地分配到两个驱动轮上。

9bf7beea-8f16-11ee-939d-92fbcf53809c.png

9c2bd496-8f16-11ee-939d-92fbcf53809c.png

TVC技术作用主要包括

●提升车辆操控性,转向响应提高50%;

●改善驾乘舒适性,减少横向G值和冲击变化率;

●提高行车安全性,减小车身横摆,适用于雪地等低附场景。

9c47b45e-8f16-11ee-939d-92fbcf53809c.png

9c7806fe-8f16-11ee-939d-92fbcf53809c.png

9c928876-8f16-11ee-939d-92fbcf53809c.png

最新版本的TVC技术带来了“Sport+ 模式”,在高速弯、紧急变线等场景中表现更出色,包括提升出弯车速、减小方向盘转角、降低横摆波动等。

9ff18e22-8f16-11ee-939d-92fbcf53809c.png

a00d602a-8f16-11ee-939d-92fbcf53809c.png

a0193efe-8f16-11ee-939d-92fbcf53809c.png

a0335cee-8f16-11ee-939d-92fbcf53809c.png

a039aca2-8f16-11ee-939d-92fbcf53809c.png

a04120a4-8f16-11ee-939d-92fbcf53809c.png

二)电子防滑控制(eASC)- Electronic Anti Slip Control

a0760c7e-8f16-11ee-939d-92fbcf53809c.png

eASC技术能够动态识别颠簸/湿滑路面,智能调节扭矩,大幅提升行驶安全与平顺性。通过路况输入和策略计算,实现对扭矩的精准调整,抑制轮端波动,有效收敛车辆的晃动和滑移。

a09ac62c-8f16-11ee-939d-92fbcf53809c.png

a0b8c8ca-8f16-11ee-939d-92fbcf53809c.png

a0d0504e-8f16-11ee-939d-92fbcf53809c.png

a0f896f8-8f16-11ee-939d-92fbcf53809c.png

a103052a-8f16-11ee-939d-92fbcf53809c.png

ieASC技术作用主要包括

●在不同路面情况下,减少轮速波动、降低前向冲击感;

●在湿滑路面,降低打滑程度和冲击度,减少甩尾风险。

a11ee8da-8f16-11ee-939d-92fbcf53809c.png

三)协同拖曳扭矩控制(CDTC)- Cooperative Drag Torque Control

a1253a64-8f16-11ee-939d-92fbcf53809c.png

a129be4a-8f16-11ee-939d-92fbcf53809c.png

a14cb396-8f16-11ee-939d-92fbcf53809c.png

a16a6e2c-8f16-11ee-939d-92fbcf53809c.png

a18db832-8f16-11ee-939d-92fbcf53809c.png

CDTC技术通过优化电制动扭矩与液压制动力矩协同,强化电机与液压制动的协同控制,显著提升行驶安全与体验一致性。该技术动态调节力矩分配,使电液协同,兼顾能耗与驾乘体验,实现更稳定、平顺的驾控。在复杂的电液协同控制中,CDTC技术解决了电快液慢的问题,同时克服了动能回收过程中的电量和温度对刹车体验的影响,确保了驾驶的安全性和稳定性。

小结:HUAWEI DATS 3.0动态自适应扭矩控制系统的引入,不仅提升了车辆的操控性、舒适性和安全性,也展示了智能控制技术在汽车行业的前沿地位。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2573

    文章

    54368

    浏览量

    786027
  • 控制系统
    +关注

    关注

    41

    文章

    6893

    浏览量

    113558
  • 新能源车
    +关注

    关注

    3

    文章

    672

    浏览量

    25109

原文标题:HUAWEI DATS 3.0动态自适应扭矩控制系统

文章出处:【微信号:QCDZSJ,微信公众号:汽车电子设计】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    高压放大器驱动:基于FPGA的SPGD自适应光学控制平台的探索

    实验名称: 基于FPGA的SPGD自适应光学控制平台整体设计 测试目的: 在分析优化式自适应光学系统平台的基础上,结合SPGD算法原理以及项目实际需求,对SPGD
    的头像 发表于 10-11 17:48 667次阅读
    高压放大器驱动:基于FPGA的SPGD<b class='flag-5'>自适应</b>光学<b class='flag-5'>控制</b>平台的探索

    五大电磁干扰自适应抑制系统软件:动态智能应对复杂电磁环境核心方案

    五大电磁干扰自适应抑制系统软件:动态智能应对复杂电磁环境核心方案
    的头像 发表于 09-17 16:39 668次阅读
    五大电磁干扰<b class='flag-5'>自适应</b>抑制<b class='flag-5'>系统</b>软件:<b class='flag-5'>动态</b>智能应对复杂电磁环境核心方案

    电磁干扰自适应抑制系统动态智能应对复杂电磁环境核心方案

    五大电磁干扰自适应抑制系统动态智能应对复杂电磁环境核心方案
    的头像 发表于 09-17 16:38 134次阅读
    电磁干扰<b class='flag-5'>自适应</b>抑制<b class='flag-5'>系统</b>:<b class='flag-5'>动态</b>智能应对复杂电磁环境核心方案

    电磁干扰自适应抑制系统平台全面解析

    电磁干扰自适应抑制系统平台全面解析
    的头像 发表于 09-17 16:12 433次阅读
    电磁干扰<b class='flag-5'>自适应</b>抑制<b class='flag-5'>系统</b>平台全面解析

    电磁干扰自适应抑制系统平台全面解析

    电磁干扰自适应抑制系统平台精简解析 北京华盛恒辉电磁干扰自适应抑制系统平台,是针对复杂电磁环境下电子设备稳定运行需求设计的综合性解决方案,通过整合多元技术实现
    的头像 发表于 09-17 16:11 277次阅读

    基于模糊自适应PID控制的永磁同步电机伺服系统研究

    在对模糊控制的基本理论和PD控制的功能进行分析的基础上,对永礁同步电机进行数学建模,通过d-q变换和park变换,得到永磁同步电机数学模型的传递画数,在此基础上,运用模糊控制理论,采用模糊自适
    发表于 07-29 16:16

    无速度传感器永磁同步直线电机伺服系统自适应鲁棒控制

    摘要:为了提高永磁同步直线电机伺服系统动态性能,提出了一种新型的自适应鲁棒控制器。该控制器不含电机参教,只与
    发表于 07-09 14:24

    无刷直流电机自适应模糊直接转矩控制研究

    针对无刷直流电机( BLDCM)转矩脉动较大和传统 P1速度环调节能力差的问题,提出了自适应模糊直接转矩控制的策略。集成了转矩直接控制和模糊控制自适
    发表于 07-09 14:20

    无刷直流电机自适应模糊PID控制系统

    控制系统的计算机仿真数学模型。设计了系统速度环的模糊PID控制器,仿真结果表明。与传统PID控制相比,自适应PD
    发表于 07-09 14:18

    无刷直流电机模糊自适应PID控制的研究

    摘要:为了提高无刷直流电机控制系统的动、静态性能,将模糊控制结合PID控制算法应用到无刷直流电机速度控制系统中。在分析了无刷直流电机速度控制系统
    发表于 07-07 18:29

    无刷直流电机模糊自适应PID的研究及仿真

    了理想的相电流、反电动势以及扭矩的波形图。仿真结果表明相对于常规PI控制,采用模糊自适应PI控制器实现负载变化情况下转速的快速跟踪控制,提高
    发表于 07-07 18:26

    无刷直流电机单神经元自适应智能控制系统

    常规PID,大大提高了系统的跟随性,能满足BLDCM系统对实时性的要求。 纯分享帖,点击下方附件免费获取完整资料~~~ *附件:无刷直流电机单神经元自适应智能控制系统.pdf 【免责声
    发表于 06-26 13:36

    无模型自适应控制在永磁同步电机转速中的仿真研究

    摘要:针对永磁同步电机非线性、时变不确定性及难以建立精确的数学模型等问题,不同于动态线性时变模型替代一般非线性系统,提出一种基于模糊过程和系统输出误差的无模型控制器。基于反馈线性化通过
    发表于 06-25 13:01

    GLAD应用:大气像差与自适应光学

    概述 激光在大气湍流中传输时会拾取大气湍流导致的相位畸变,特别是在长距离传输的激光通信系统中。这种畸变会使传输激光的波前劣化。通过在系统中引入自适应光学系统,可以对激光传输时拾取的低频
    发表于 03-10 08:55

    基于自适应优化的高速交叉矩阵设计

    提出了一种基于自适应优化的交叉矩阵传输设计,采用AHB协议并引入自适应突发传输调整和自适应优先级调整的创新机制。通过动态调整突发传输的长度和优先级分配,实现了对数据流的有效管理,提升了
    的头像 发表于 01-18 10:24 703次阅读