0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

锂离子电池的等效电路建模

jf_pJlTbmA9 来源:Arrow Solution 作者:Arrow Solution 2023-11-23 17:45 次阅读

作者:Arrow Electronics El Mehdi Harras,来源: Arrow Solution微信公众号

近年来,锂离子电池作为最常见的储能设备(电动汽车、固定式蓄电池等)在许多应用中得到了应用。它们因其高能量和功率密度、重量轻、工作温度范围宽而广受欢迎。然而,它们存在内部短路和热失控等潜在的安全问题。

我们使用BMS实时监控电池状态,并确保在不同的使用情况下可靠安全地运行。BMS还包括其他功能,如电池状态、健康状况和功率估计。这些估计依赖于一个好的电池模型,我们可以将其分为两类:

电化学模型基于对底层物理的理解和从内到外构建模型

等效电路模型,使用电路来定义不同输入电流刺激的行为电压近似值。

电化学模型很耗时,通常用于了解电池内部的反应过程,这比其他电池模型具有更好的准确性。等效电路模型基于使用电压和电流源电容器电阻器电气表示。

SOC相关模型

第一个模型基于与电阻器串联的电压相关电源(图6(a))。它描述了两种情况下的锂离子电压行为:

OCV:当电池承受负载时,开路电压(电池电压处于静止状态)下降

当电池充电时,端子电压上升到OCV以上

这个模型可以用两个基本方程来描述:
wKgaomT-teiAOi_hAAA0J-9bhvo978.jpg

z是电池的SOC;η是库仑效率v电荷效率;i是提供给负载的电流

该串联电阻在模型中的存在也意味着功率被电池作为热量耗散,因此能量效率并不完美。这是一个简单的模型,适用于许多设计,但不适用于大型电池组,如电动汽车和电网存储系统。

扩散电压模型

市场上的任何电池都有一些极化效应,应该对此进行建模。极化可以定义为由于电流通过电池而使电池的端子电压偏离开路电压的任何偏离。

图1举例说明了这一现象的三个阶段:

t=0至t=5min:电池静止(T1)

t=5min至t=20min:电池承受连续放电电流(T2)

t=20min至t=60min:负载被移除,电池处于静止阶段(T3)

wKgaomT-teiAX_2QAAB9nRCSvbk437.jpg

图1:锂离子的明显极化

对于该模型,T3阶段没有很好地呈现。我们需要强调的是,这种现象是由锂离子电池的缓慢扩散过程和俗称的扩散电压引起的。其效果可以使用一个或多个并联RC子电路来近似。这个新模型(图6(b))可以用以下方程来描述:

wKgZomVdbKSAHv_OAABK9ufWH0c311.jpg

我们还可以使用图形方法轻松地近似模型参数

wKgZomT-teiAQliYAACNTgEskms116.jpg

图2:参数近似的图形方法

一旦我们根据温度和电荷状态对RC支路进行建模,模型就可以得到改进,如图6(b)所示。

Warburg阻抗模型

Randles提出了一个包括Warburg阻抗元件的等效电路模型(图5(c)),其中对电解质电阻进行建模,是对由于负载引起的电极-电解质界面上的电压降进行建模的电荷转移电阻,是模拟电极表面电解质中电荷积聚效应的双层电容,是Warburg阻抗。

wKgZomT-teiARr5QAAAh2N-mya0745.jpg

图3:Randles电路

Warburg阻抗对锂离子在电极中的扩散进行了建模,其频率依赖性建模为:

wKgZomT-teiAQp6JAAA_Ozx5J_w254.jpg

其中Aw被称为Warburg系数,取决于电池的化学性质。

Warburg阻抗通常通过在某些感兴趣的频率范围内串联的多并联RC电路(图3)来近似。电容器经常被省略,因为它至少在低频率下具有低影响。当使用电化学模型时,可以研究高频下的冲击。考虑到这一点,最终模型崩溃为图6(c)中的模型基本上是具有RC网络的扩散电压模型。

Warburg阻抗通常近似。Warburg阻抗通常通过在某些感兴趣的频率范围内串联的多并联RC电路(图3)实现近似。电容器经常被省略,因为它至少在低频率下具有低影响。当使用电化学模型时,可以研究高频下的冲击。考虑到这一点,最终模型崩溃为图6(c)中的模型,该模型基本上是具有RC网络的扩散电压模型。

增强型自校正模型

从现实中的测试来看,还有另一种现象需要建模,称为滞后现象。电池的这种特性造成了充电/放电结束时的电压值与平衡后的电压值之间的失配,这取决于电池使用的最近历史。图4和图5中显示了一个例子,证明了磁滞的影响,以确定SOC。对于3.3V的电压,SOC可以对应于20%和90%之间的任何值。

wKgZomT-teiAWK5VAABxDPYhcYQ256.jpg

图4:SOC与电池电压的关系,显示了磁滞现象

wKgaomT-teiAJYBUAABmaelz5dA073.jpg

图5:SOC与电池电压的关系,显示了磁滞现象的证据,没有OCV

我们需要一个良好的磁滞模型来了解我们期望的完全静止的端子电压与开路电压的不同程度。

当在先前的模型中包括磁滞时,我们可以引入增强的自校正单元模型,该模型结合了所有先前的现象(OCV依赖性、扩散电压、Warburg阻抗、磁滞)。图6(d)显示了一个具有单个并行RC的示例,但我们可以很容易地想象具有RC网络的相同模型。

wKgZomT-teiAPXzEAALLFa0WBnk444.jpg

表1:电池型号和主要功能

我们可以注意到,每当我们包含电池的新特性时,我们的模型就会变得更加复杂。我们已经在MATLAB/Simulink中实现了这些模型,以测试我们可以回顾的几种类型的电池的准确性和特性。

其他模型

在介绍不同的方法来定义我们模型的参数并达到良好估计SoC、SoH、SOP的目的之前,我们想提到的是,还有其他模型可以改进和介绍电池的某些方面,例如:

蓄电池自放电

引入随机噪声

多相关参数

线性回归模型

这些已在表1中列出并总结。这些模型结合了电池测试过程中经历的不同现象,并以不同的形式呈现。

wKgZomT-teiAA6uhAABsjIWm_vQ793.jpg

图6:等效电路模型

模型的标识

在开发ECM时,需要识别几个参数,如RC网络和串联电阻器。这些参数随后用于预测电池的不同状态(SoC、SoH、SOP),这些状态受电流、温度和老化等因素的影响。我们区分了两种主要方法,即:在线,数据的处理是以顺序的方式逐个完成的,而不是从一开始就可用;以及离线,其中整个数据可用于算法,该算法只能在实验室环境中实现,并且在服务期间可能逐渐失去保真度。在线识别方法优于离线识别方法。

在线方法可分为两大类,递归方法,如递归最小二乘法(RLS)和卡尔曼滤波器家族,我们受益于其适应性和低计算量。另一方面,非递归方法,如优化算法,具有良好的准确性和稳定性,但代价是高昂的计算工作量和同时处理大量数据。

表2显示了我们将在后面的文章中探索的三种主要方法(卡尔曼滤波器族、模糊逻辑、人工神经网络)。

wKgaomT-temAP-OZAAJIbNMVQ_o047.jpg

表2:SoC测定的不同技术总结

挑战与展望

在线和离线参数识别技术各有优缺点。一方面,在线参数识别通过最小化估计模型和测量之间的误差,在实际运行过程中达到最佳参数估计,这导致了比离线技术更好的适应性和鲁棒性。尽管如此,在线估计器在高动态剖面下工作时显示出局限性。此外,在线技术在相互时间常数的激励和松弛过程中处理电池动力学,这可能导致电池电压预测不佳。另一方面,离线技术不受上述限制,可以捕捉不同操作范围内的模型参数和变化趋势。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3090

    浏览量

    76498
  • soc
    soc
    +关注

    关注

    38

    文章

    3746

    浏览量

    215693
  • 建模
    +关注

    关注

    1

    文章

    281

    浏览量

    60502
  • 等效电路
    +关注

    关注

    6

    文章

    281

    浏览量

    32541
  • bms
    bms
    +关注

    关注

    103

    文章

    854

    浏览量

    64839
收藏 人收藏

    评论

    相关推荐

    锂离子电池等效电路建模简析

    近年来,锂离子电池作为最常见的储能设备(电动汽车、固定式蓄电池等)在许多应用中得到了应用。
    发表于 09-11 14:39 1582次阅读
    <b class='flag-5'>锂离子电池</b>的<b class='flag-5'>等效电路</b><b class='flag-5'>建模</b>简析

    [讨论]讨论聚合物锂离子电池是否能替代锂离子电池

    最近我在聚合物锂离子电池行业市场投资研究报告2007-2008版聚合物锂离子电池行业市场投资研究报告2007-2008版看到一些关于聚合锂离子电池的一些相关内容,近段时间关于手机爆炸的新闻也是
    发表于 05-13 11:00

    电动汽车用磷酸铁锂离子电池的PNGV模型分析

    的仿真精度研究表明:由于温度对磷酸铁锂离子电池特性的影响较为显著,PNGV等效电路模型的仿真精度会随着初始温度的变化有所波动,所以为了保证仿真效果,必须在更多的温度点上进行参数辨识并进行优化;PNGV等效电路模型适用于城市工况下
    发表于 03-11 11:38

    锂离子电池的类型

    锂离子电池可以应用到各种领域中,因此,其类型也同样具有多样性。按照外形分,目前市场上的锂离子电池主要有三种类型,即钮扣式、方形和圆柱形国外已经生产的锂离子电池类型有圆柱形、棱柱形、方形、钮扣式、薄型
    发表于 05-17 10:21

    锂离子电池集成保护电路的基本功能

    锂离子电池的保护电路必须具有以下3个功能:① 过充监测:过充监测电路可防止锂离子电池的特性劣化、起火及破裂,确保安全性。② 过放监测:过放监测电路
    发表于 05-24 10:54

    锂离子电池的性能

    对于锂离子电池的性能知识了解,主要是从下面的六个方面来分析,达到对锂离子电池的一个初步掌握。1.锂离子电池的电化学原理 锂离子电池正极的主要成分为LiCoO2,负极的主要成分为C,充电
    发表于 06-13 13:36

    锂离子电池和锂电池的区别

      很多人会误以为锂离子电池就是锂电池,实际上两者是有区别的。那么锂离子电池和锂电池的区别在哪里呢?  锂电池的正极材料是二氧化锰或亚硫酰氯
    发表于 12-28 15:10

    【转】锂离子电池的维护和保存技巧分享

    锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极
    发表于 08-18 20:16

    锂离子电池简介

      锂离子电池简介  锂离子电池:是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之
    发表于 11-03 16:11

    基于锂离子电池的过充保护方案

    锂离子电池在高温环境工作或遇种负载、大电流使锂离子电池内部产生高温,锂离子电池同样会增加电池漏液、冒烟、燃烧、爆裂的危险。 所以锂离子电池
    发表于 11-04 06:37

    锂离子电池的制作工艺与工作原理是怎样的

    锂离子电池特点锂离子电池的发展历史锂离子电池类型锂离子电池 的主要组成部分锂离子电池的制作工艺石墨烯在
    发表于 03-01 11:32

    锂离子电池保护IC定义和工作原理

    锂离子电池保护板。事实上,锂离子电池保护板可以有效防止电池的过充电、过放电和过流。 什么是锂离子电池保护IC 锂离子电池保护IC是安装在
    发表于 03-22 10:57

    锂离子电池充放电基础知识

    锂离子电池的重量和体积相比,锂离子电池的能量密度较高,因此在给锂离子电池充电时也存在一些安全问题。在设计这些电池的充电电路之前,让我们先了
    发表于 04-24 10:30

    锂离子电池充电的问题

    我在淘宝上买了一个锂离子电池充电器和四节1.5V锂离子电池。收到货以后,我测了一下电池电压,大概1.51V左右,也有1.52V的。然后我充电,充满以后又测了一下,都是1.52V,是不是1.5V
    发表于 02-04 15:41

    车用锂离子电池建模及荷电状态估计

    针对电动汽车动力锂离子电池的状态估计问题,提出一种基于分数阶等效电路建模方法,并采用分数阶卡尔曼滤波算法估计电池荷电状态( SOC)。首先建立基于二阶
    发表于 03-09 09:51 1次下载
    车用<b class='flag-5'>锂离子电池</b><b class='flag-5'>建模</b>及荷电状态估计