0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

超强防干扰USB电缆设计过程

广东万连科技有限公司 2023-10-12 08:27 次阅读

最近发现市场的线缆需求,工业类和消费类的区间越来越小,消费类的线材也需要按照工业类的产品需求设计,便于统一规格,今天我们分享一个在开发超强防干扰USB电缆设计过程来讨论,该电缆要求在1000伏的外界干扰电压下能正常通信,在设计开发的过程中,我们应用了实验设计的方法,供大家参考交流.

实验设计

实验设计(Designof Experiments) 是一系列试验及分析方法集,通过有目的地改变一个系统的输入来观察输出的改变情况。图1示出一个系统示意图。图1 中的系统既可以看作是一个产品开发过程,也可以看作是一个生产过程。对于一个生产过程, 一般它是由一些机器、操作方法和操作人员所组成的,把一种输入原材料转变(加工)成某种输出产品。这种输出产品具有一些可以观察的质量特性,也可叫响应(例如,产量、强度、硬度等)。一些过程参数(X1,X2,⋯,Xp)是可控的,例如直径、绞距等; 而另一些(Z1,Z2,⋯,Zq)是不可控的, 它们有时被称为噪声参数,例如环境温度、湿度等.16959188-6896-11ee-9788-92fbcf53809c.png

图1一个系统示意图:Input输入; Output输出;Controllable input factors可控的输入参数X1,X2,⋯,Xp; Uncontrollable input factors不可控的输入参数Z1,Z2,⋯,Zq

实验设计的目的

☞确定哪些参数对响应的影响最大;

☞确定应把有影响的参数设定在什么水平,以使响应达到或尽可能靠近希望值(On target);

☞确定应把有影响的参数设定在什么水平,以使响应的分散度(或方差)尽可能减小;

☞确定应把有影响的参数设定在什么水平,以使不可控参数(噪声参数)对响应的影响尽可能减小。

因此, 在制造过程的开发以及解决过程中出现的问题中都可以应用实验设计,以改善过程的性能,或者使过程对于外部波动源(干涉)不那么敏感,即得到一个“稳健”(Robust)的过程,同时还可节省时间和降低成本。所以,实验设计对于开发和改善制造过程,提高产品质量是一个非常重要的工程工具。除此之处,实验设计还可以在新产品开发或现有产品改进中起到很大作用:

☞评价和比较不同设计方案;

☞评价代用材料;

☞确定影响性能的关键产品设计参数(KPC)。在这些领域应用实验设计可以改善产品的制造工艺性、增强服役性能和可靠性、降低产品成本和缩短产品开发周期.

设计思路分享

根据市场的要求,此款线材对抗干扰的要求很高,于是经过分析讨论之后认为除了达到USB2.0规范要求的各项参数要求之外就是要提高该线材的屏蔽效率(SE)和转移阻抗(TI),转移阻抗是用来表示屏蔽层效率或者屏蔽层保护效果的参数,转移阻抗用单位长度量表示,即毫欧姆/米(m ohm/m),对于每一长度的屏蔽电缆而言,假如在其屏蔽层的某个表面有一电流存在,那么在此屏蔽层的另一表面会由此电流而感生一电势差,上述电势差与电流之比即为“转移阻抗”。屏蔽电缆的转移阻抗决定了其屏蔽层的效率,它包含两个方面的含义:防止外界的电磁干扰进入电缆内部的能力以及阻止电缆内部信号向外部辐射的能力。转移阻抗的数值越小,其屏蔽层的效果越好!一般量测的分析如下:

■Radiation loss数据说明

电磁场散逸在空气中或介质而损失能量。也就是EMI中的辐射干扰(另一种是经由电流影响其他装置的传导干扰),这能量若藕合到其它装置就造成干扰。若辐射损耗要小,则shielding要做好.在低频时,介质的导电率低,故其流经的电流很小,然而,在高频时,介质内会被导入电流而有损耗.主要的处理方式就是增加铝箔屏蔽层+编织或者缠绕铜导体来改善此系数.由于在高频时,电流愈靠近导体周围流动,称集肤效应(skin effect),此乃导因在更高频时,导体中心的inductive reactance增大,强迫电流流向周围。所以,真正可用的导体面积缩小,导致电阻值增加,损耗增加,增加编织导体或者屏蔽导体就是影响电流变化的方式之一.

■分享过程的公式及各种屏蔽组合参数的影响度

Impedance(阻抗) = Resistance(电阻) + Reactance(电抗)

Reactance有两种: Inductive reactance (XL = L) 感抗

Capacitive reactance (Xc = 1/ C) 容抗

低频时:reactance很小,主要是看resistance。因此在直流及低频时,所量测(譬如用三用电表)到的是电阻.

高频时:resistance很小,主要是reactance(电容及电感的效应)。故在高频时,reactance就是指阻抗.

■电缆连接线的屏蔽效果比较:

16b085b0-6896-11ee-9788-92fbcf53809c.png

35所示的是电缆连接线的屏蔽效果比较。测试时源端阻抗为100Ω,负载端阻抗为1MΩ。测试用干扰信号为100kHz的磁场信号。

连接(A):传输线为单芯屏蔽线,屏蔽层不与源端和负载端连接,源端和负载端均接本地地。以这种连接方式作为参照基准,其相对屏蔽效能为0dB。

连接(B):传输线为单芯屏蔽线,屏蔽层不与源端连接,但和负载端地连接,源端和负载端均接本地地。其相对屏蔽效能为0dB。

连接(C):传输线为单芯屏蔽线,屏蔽层与源端和负载端地连接,源端和负载端均接本地地。其相对屏蔽效能为27dB。

连接(D):传输线为双绞线,其一线在源端和负载端均接地,源端和负载端均接本地地。双绞线在本身具有磁屏蔽作用,但由于地环路存在使总的磁屏蔽效能下降,其相对屏蔽效能只有13dB。

连接(E):传输线为屏蔽双绞线,屏蔽层在负载端单端接地,源端和负载端均接本地地。虽然屏蔽层起到电场屏蔽作用,但并没有增加磁屏蔽效果,所以其相对屏蔽效能仍为13dB。

连接(F):传输线为屏蔽双绞线,屏蔽层在源端和负载端均接地,源端和负载端均接本地地。由于屏蔽层的阻抗比信号线低,因此分流了很大一部分地环路噪声电流,从而增加了磁屏蔽效能,其屏蔽效能为28dB。如果干扰频率大于1MHz,地环路噪声电流在屏蔽层外表面流动,这将进一步提高磁屏蔽作用。

由图35 a可知,在电路两端都接地的情况下图(C)和图(F)所示的磁屏蔽效能比其他方式高。由于屏蔽层两端接地,具有磁屏蔽作用,只是在地环路的影响下磁屏蔽效能不会很大。如果频率升高达f>1MHz时,磁屏蔽效能将有很大增加,因为同轴电缆和屏蔽双绞线地环路的影响很小。如果频率降低到10kHz以下,则磁屏蔽作用大大下降。所以图(C)和图(F)所示只适合于高频运用。

图35 a分析的是电路两端接地的情况,其缺点是地环路会减小磁屏蔽效能,特别是低频时影响更严重。如果电路是负载端单端接地则磁屏蔽效能可以大幅度增加,结果由图35b给出。

连接(G):传输线为单芯屏蔽线,屏蔽层与源端连接和负载端连接,负载端接本地地。这时不存在地环路,所以没有地环路影响。外界磁场能穿过的环路面积只有屏蔽层与芯线之间很小的面积,因为屏蔽层可以看作是在其中心轴上放置的一根等效导线,而这根等效导线是非常靠近芯线的。这时的相对屏蔽效能可达80dB,与图(C)所示的电路两端接地时比较提高了53dB。

连接(H):传输线为双绞线,连接(I):传输线为屏蔽双绞线,都是电路单点接地,屏蔽层也是单点接地。双绞线本身具有磁屏蔽性能,在没有地环路影响下充分发挥了它的磁屏蔽作用,双绞线可达55dB,屏蔽双绞线可达70dB。这里屏蔽效能比较的试验装置中仍有一定的电场耦合,而双绞线是没有电场屏蔽性能的,只有屏蔽双绞线才具备电场屏蔽性能。因此,连接(I)比连接(H)具有更高的屏蔽效能。此外比较连接(I)与连接(G),可知同轴电缆磁屏蔽效果比屏蔽双绞线好,这是因为同轴电缆对磁场呈现的环路面积比双绞线更小。当然如果进一步增加双绞线的单位长度的绞合数则双绞线的磁屏蔽效能也会增加。

在实际应用中低频磁屏蔽电路常优选连接(I)所示的屏蔽双绞线,而不是连接(G)所示的同轴电缆。这是因为连接(I)所示的屏蔽层不是信号电路的一部分,仅是起到电场屏蔽作用,而连接(G)中同轴电缆的屏蔽层有信号回流流过。

连接(J):传输线为屏蔽双绞线,屏蔽双绞线的屏蔽层两端接地,这可能降低一些磁屏蔽效能。因为屏蔽层形成了地环路,噪声电流在屏蔽层流动时会在内部两根线上产生感应电压,如果内部两根线对屏蔽层有不平衡处,则两根线上的感应电压就不可能完全抵消,从而产生干扰。这种方式测得的磁屏蔽效能为63dB。

连接(K):传输线为屏蔽双绞线,屏蔽层与源端相连,并在负载端接地,其屏蔽效能比连接(I)高一些,为77dB。这种连接方式结合了连接(I)和连接(G)的特点。但是这种方式并不常用,因为万一由于某种原因屏蔽层上感染上噪声就可能流入信号线,因此屏蔽层与信号线还是在一点连接为好。

由图35 b可知在电路单端接地时采用连接(G)和连接(I)可以得到较高的磁屏蔽效能,实际运用中这两种方式也最普遍.

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • usb
    usb
    +关注

    关注

    59

    文章

    7434

    浏览量

    258183
  • 电缆
    +关注

    关注

    18

    文章

    2426

    浏览量

    53697
  • 工业
    +关注

    关注

    3

    文章

    1550

    浏览量

    45426
收藏 人收藏

    评论

    相关推荐

    GTX312L【超强干扰、12通道电容式触摸芯片】

    GTX312L是韩国GreenChip推出的一款12通道电容式触摸IC,具备自动灵敏度校准、超强干扰能力,可抗特斯拉(小黑盒)线圈干扰, 可完美Pin to Pin替换TSM12 ;支持单键/多点
    的头像 发表于 04-17 10:32 103次阅读
    GTX312L【<b class='flag-5'>超强</b>抗<b class='flag-5'>干扰</b>、12通道电容式触摸芯片】

    铜芯铠装电缆规格型号有哪些

    铜芯铠装电缆是一种广泛用于电力、通信和控制系统中的电缆产品。它由铜芯、绝缘层、包装层和外护套组成,外护套上还拥有一层金属铠装,提供额外的保护和机械强度。铜芯铠装电缆具有良好的导电性能、优异的抗
    的头像 发表于 02-27 10:30 454次阅读

    数字信号电缆测试的重要性 数字信号电缆测试的方法和技术

    和可靠性,确保系统正常运行。以下是数字信号电缆测试的重要性: 1. 确保信号质量:数字信号电缆测试可以检测和纠正潜在的信号失真问题,如干扰、噪声、衰减等。通过测试,可以保证信号在传输过程
    的头像 发表于 02-01 15:48 188次阅读

    电缆屏蔽层的作用 电缆屏蔽层的种类和使用场景

    电缆屏蔽层的作用 电缆屏蔽层的种类和使用场景 电缆屏蔽层正确的接地做法 电缆屏蔽层接地注意事项 电缆屏蔽层是
    的头像 发表于 12-11 15:05 892次阅读

    冷缩电缆头与热缩电缆头的差别

    头在原理、安装和性能等方面存在一些显著差异。 首先,冷缩电缆头是指一种采用冷缩套管进行绝缘和密封的电缆终端处理技术。在冷缩电缆头的安装过程中,使用热风或火焰对冷缩套管进行热收缩,从而使
    的头像 发表于 12-07 16:32 1793次阅读

    控制电缆组成部分

    电磁干扰,提高电缆的抗干扰性能。 护套层:护套层可以保护电缆不受机械损伤,同时可以防止潮气侵入。 以上是控制电缆的主要组成部分,不同的部分具
    的头像 发表于 11-07 11:30 590次阅读

    USB MSD IAP的原理及过程实现

    AT32 USB MSD IAP主要重点介绍USB MSD IAP 的原理及过程实现。
    发表于 10-23 07:04

    有没有什么方法降低USB3.x对2.G信号接收干扰

    有没有什么方法降低USB3.x对2.G信号接收干扰USB 3.x是一种高速数据传输协议,它的出现使得数据传输速度大大提升。然而,由于其高频高速的特点,USB 3.x也会对其他低速信
    的头像 发表于 10-20 14:37 555次阅读

    传导干扰和辐射干扰的区别 如何解决传导干扰

    电子设备和电路中出现的电磁干扰现象。虽然两者都是电磁干扰现象,但它们的产生原因、传播方式和解决方法有所不同。 传导干扰是指电磁波通过电缆、导线、电源线等传输介质,进入或传递到其他电路或
    的头像 发表于 10-20 14:22 2412次阅读

    一个超强的防干扰USB电缆设计

    最近发现市场的线缆需求,工业类和消费类的区间越来越小,消费类的线材也需要按照工业类的产品需求设计,便于统一规格
    的头像 发表于 10-10 15:50 584次阅读
    一个<b class='flag-5'>超强</b>的防<b class='flag-5'>干扰</b><b class='flag-5'>USB</b><b class='flag-5'>电缆</b>设计

    为什么电子设备的I/O电缆容易产生电磁干扰

    为什么电子设备的I/O电缆容易产生电磁干扰?  电子设备是我们日常生活中必不可少的组成部分。电子设备的I/O电缆是将设备与其他设备或计算机连接的重要电缆。但是,这些I/O
    的头像 发表于 09-12 16:07 826次阅读

    如何提高can总线光端机的抗干扰能力?

    要提高CAN总线光端机的抗干扰能力,可以采取以下几个措施: (1)使用屏蔽电缆:选择具有良好屏蔽性能的电缆来连接CAN总线光端机和其他设备。屏蔽电缆可以有效地阻挡外部电磁
    的头像 发表于 06-29 08:10 465次阅读

    USB接口的EMC设计

    在提到干扰USB的影响时,差分数据传输与简单的同轴电缆相比具有很大的优势。在感性干扰效应(磁场)情况下,导线的绞合可以弥补干扰效应。
    发表于 06-16 12:49 1078次阅读
    <b class='flag-5'>USB</b>接口的EMC设计

    806型地下管线电缆故障探测仪技术指标

    地下管线电缆故障探测仪由武汉华能联创电气有限公司专业研发团队精心打造,融合超窄带滤波器等最先进技术,具有超强干扰能力、精准定位和测深等优异探测性能
    的头像 发表于 05-22 09:36 426次阅读

    浅析EMI电磁干扰的传播过程

    EMI是电磁干扰的统称,但实际上电磁干扰分为两种,一种是传到干扰,另一种是辐射干扰。传导干扰主要是电子设备产生的
    的头像 发表于 05-02 14:46 1319次阅读
    浅析EMI电磁<b class='flag-5'>干扰</b>的传播<b class='flag-5'>过程</b>