0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

中山大学在微纳马达用于神经调控方面取得重大研究

MEMS 来源:微流控 2023-09-27 09:43 次阅读

合成微/纳马达是一种微型化装置,可以通过转换外部能量或化学燃料转化为自主运动,用于靶向给药、体内成像和微创手术等。中山大学材料科学与工程学院彭飞副教授团队提出,还可以将微纳米马达作为一种与神经系统通信的新方式。

通过镍-锌(Ni-Zn)微马达信号传导诱导神经干细胞定向分化

神经干细胞具有自我更新、分化和环境调节的能力,被认为在中风、脑损伤治疗和神经元再生方面很有前景。内源性神经干细胞的激活,吸引着越来越多的研究热情,避免了免疫排斥和外源性细胞移植的伦理问题。然而,如何在原位诱导定向生长和分化仍然是一个主要的挑战。

近期,彭飞副教授团队提出了一种基于自建立的电化学场的非侵入性纯水驱动的Ni-Zn微马达(图1a)。在Zn端,H⁺被还原生成H₂和Zn²⁺。Zn²⁺的逐渐积累产生了浓度梯度和驱动Ni-Zn微马达的自构造电场。有趣的是,与以前的化学驱动微马达相比,Ni-Zn微马达在运动过程中没有产生气泡,从而避免了气体栓塞。

微马达可以磁引导和精确接近目标神经干细胞,在定位和可控性方面具有独特的优势。水驱动的Ni-Zn微马达在运动过程中产生Zn²⁺。Zn²⁺场和电压门控Ca²⁺通道的激活,导致细胞内Ca²⁺的短暂变化,从而激活后期神经干细胞的分化。接近电池后,由于马达自身Zn端到Ni端的浓度梯度,在单个马达上形成自构造的电场。

神经干细胞受到Ni-Zn微马达电场的影响,产生生物电信号,这是诱导神经干细胞分化的一个因素。Zn²⁺还具有促进干细胞增殖、神经发生和神经元分化的作用。因此,我们有理由认为,微马达释放的Zn²⁺对维持神经干细胞中的Zn²⁺稳态具有重要意义。

因此,微马达通过电化学场,允许生物电信号与内源性神经干细胞进行交换和通讯,从而允许在体内调节神经元增殖和定向分化(图1b)。因此,该研究开发了一种结合电和化学效应的非侵入性和持久的神经刺激系统。它使与神经干细胞再生和分化相关的信号通路能够得到持久的激活。有针对性和持久的效果,同时避免严重的术后创伤和并发症。

12ed025c-5c87-11ee-939d-92fbcf53809c.png

图1 Ni-Zn微马达的制备及靶向激活神经干细胞和引导细胞分化的示意图

该工作以“Directed Neural Stem Cells Differentiation via Signal Communication with Ni-Zn Micromotors”为题,发表在Advanced Materials期刊上。中山大学材料科学与工程学院2021级博士研究生封烨为独立第一作者,中山大学材料科学与工程学院彭飞副教授为通讯作者。

纳米机器人介导的同步神经元激活

在自然界中,从细菌菌落到鱼群,再到哺乳动物群体,生物可以聚集在一起形成群体并呈现大规模的集体行为。这些集体群体的例子很有吸引力,独立的个体群体通过通信构建了比自己大几个数量级的复杂结构。这种信息交换可以表现为包括振荡在内的群体模式。操纵神经元振荡和探索信息交换是非常有趣的,这可以为脑科学、人工智能机器人技术提供启示。但当下人工设计合成交互系统仍然是一个挑战。

近期,彭飞副教授团队提出了振荡纳米机器人的程序化集群,其推进和集群背后的场信息作为体外与生物神经元通信并触发神经振荡的介质。如图2a所示,该研究设计了一个由近红外光驱动的高度可控的振荡纳米机器人群。纳米机器人通过纯水的光催化分解驱动电泳(并自建立的化学-电场梯度)。

通过程序化的近红外光照射,纳米机器人群呈现周期性化学-电场和集体动态可逆收缩-膨胀-收缩(振荡)行为。局部视网膜神经节细胞(RGC)可以通过来自集群的振荡电场有节奏地激活。神经元与编程的纳米机器人集群节奏同步。有趣的是,在通过耦合振荡使没有物理接触的神经元群中观察到同步周期性的波纹活动,类似于自然神经系统中的振荡网络(图2b)。

共振允许原本无法到达毫米级外的神经元信号得以传输,这不同于神经元通常认为需要突触直接连接和同步的方式。与数量有限的孤立神经元相比,神经元共振具有重要意义,因为大量同步神经元群诱导下游神经反应的机会更高。节律神经活动还允许在不同时间窗口(即节律周期的特定阶段)进行神经兴奋性调节,以便神经元组可以通过锁相神经振荡精确地相互作用。这代表该合成可编程振荡平台提供了与神经元系统通信的新方式。

130fb69e-5c87-11ee-939d-92fbcf53809c.png

图2 编序化近红外下的振荡纳米机器人集群和不同区域神经元群的同步周期性涟漪的示意图

该工作题以“Nanorobot-Mediated Synchronized Neuron Activation”为题,发表在ACS Nano期刊上。中山大学材料科学与工程学院2022级博士研究生陈彬为独立第一作者,中山大学材料科学与工程学院彭飞副教授为通讯作者。相关工作得到国家自然科学基金资助项目,广东省杰出青年科学基金项目,国家重点研发计划项目的支持。







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 驱动器
    +关注

    关注

    51

    文章

    7333

    浏览量

    143017
  • 振荡器
    +关注

    关注

    28

    文章

    3520

    浏览量

    137647
  • 人工智能
    +关注

    关注

    1776

    文章

    43920

    浏览量

    230650
  • RGC
    RGC
    +关注

    关注

    0

    文章

    2

    浏览量

    5964
  • 纳米机器人
    +关注

    关注

    0

    文章

    43

    浏览量

    11580

原文标题:中山大学在微纳马达用于神经调控方面取得新进展

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    用于先进电生理记录的有源微纳协同生物电子器件研究进展综述

    开发精确灵敏的电生理记录平台对心脏病学和神经科学领域的研究至关重要。近年来,有源微纳生物电子器件取得重大进展,从而促进了电生理学的研究
    的头像 发表于 04-16 10:55 173次阅读
    <b class='flag-5'>用于</b>先进电生理记录的有源微纳协同生物电子器件<b class='flag-5'>研究</b>进展综述

    西电郝跃院士团队在超陡垂直晶体管器件研究方面取得重要进展

    近日,西安电子科技大学郝跃院士团队刘艳教授和罗拯东副教授在超陡垂直晶体管器件研究方面取得重要进展,相
    的头像 发表于 02-20 18:22 825次阅读
    西电郝跃院士团队在超陡垂直晶体管器件<b class='flag-5'>研究</b><b class='flag-5'>方面</b><b class='flag-5'>取得</b>重要进展

    基于微流控技术的微纳米马达用于递送神经干细胞和恢复神经连通性

    神经干细胞具有自我更新、分化和环境调节的能力,干细胞治疗有望为神经损伤提供一种治疗手段。然而,该治疗手段目前在细胞植入精度和神经元连接恢复等方面仍受到限制。
    的头像 发表于 12-27 09:59 326次阅读
    基于微流控技术的微纳米<b class='flag-5'>马达</b><b class='flag-5'>用于</b>递送<b class='flag-5'>神经</b>干细胞和恢复<b class='flag-5'>神经</b>连通性

    业界首个《分布式融合存储研究报告》发布,探索智算时代新存储底座

    2023年11月30日,中国电子技术标准化研究院、存储产业技术创新战略联盟联合华中科技大学中山大学、之江实验室、浪潮信息、天翼云等20多家学研机构、企业和用户代表,共同撰写的业界首个《分布式融合
    的头像 发表于 11-30 16:25 196次阅读
    业界首个《分布式融合存储<b class='flag-5'>研究</b>报告》发布,探索智算时代新存储底座

    北理工在室温运行中波红外探测器研究方面取得突破性进展

    北京理工大学郝群教授团队在室温运行中波红外探测器研究方面取得突破性的进展,相关论文于2023年1月发表于光学顶刊Light:Science & Applications,获得封面论文。
    的头像 发表于 11-14 09:43 299次阅读
    北理工在室温运行中波红外探测器<b class='flag-5'>研究</b><b class='flag-5'>方面</b><b class='flag-5'>取得</b>突破性进展

    中国镍基超导体机理研究重大突破

    中山大学王猛教授团队首次发现液氮温区镍氧化物超导体La₃Ni₂O₇引发热潮,现在中国镍基超导体机理研究重大突破,我国中山大学物理学院姚道新教授团队成果刊登在物理学顶级期刊《物理评论快
    的头像 发表于 11-03 16:00 577次阅读

    东南大学在氮化碳自适应生物传感方面取得重大突破

    近日,东南大学化学化工学院、江苏省富碳材料器件工程研究中心张袁健教授课题组在新型拓扑结构氮化碳和自适应生物传感方面取得重要进展。
    的头像 发表于 09-21 10:30 704次阅读
    东南<b class='flag-5'>大学</b>在氮化碳自适应生物传感<b class='flag-5'>方面</b><b class='flag-5'>取得</b><b class='flag-5'>重大</b>突破

    长光辰芯发布8K APS-C画幅背照式堆栈CMOS图像传感器新品,CMOS图像传感器价格竞争加剧

      传感新品 【中山大学:研发可拉伸自供电传感器,可检测痕量生物标志物!】 及时和远程的生物标志物检测在个性化医疗和健康保护中是非常需要的,但在迄今为止报道的设备中存在巨大挑战。 中山大学吴进提出
    的头像 发表于 09-04 16:03 674次阅读
    长光辰芯发布8K APS-C画幅背照式堆栈CMOS图像传感器新品,CMOS图像传感器价格竞争加剧

    基于三维组装微针离子传感器的生理离子波动透皮监测可穿戴系统

    传感新品 【中山大学:基于三维组装微针离子传感器的生理离子波动透皮监测可穿戴系统】 新品亮点 1、降维加工法将片状微针组装成三维微针阵列; 2、基于三维微针阵列的离子传感微针阵列系统包含离子传感阵列
    的头像 发表于 08-21 17:19 668次阅读
    基于三维组装微针离子传感器的生理离子波动透皮监测可穿戴系统

    用于可穿戴无人机控制系统的仿生多功能水凝胶基电子皮肤

    重建具有表皮和真皮功能的人类皮肤与物理世界互动的需求巨大。近期,西北工业大学苑伟政、北京大学张海霞、中山大学吴进合作提出了一种仿生、超灵敏、多功能的水凝胶基电子皮肤(BHES)。它的表皮功能是使用具有纳米级皱纹的聚对苯二甲酸乙二
    的头像 发表于 08-21 11:31 970次阅读
    <b class='flag-5'>用于</b>可穿戴无人机控制系统的仿生多功能水凝胶基电子皮肤

    深圳先进院在无创血糖监测研究方面取得进展

    近日,中国科学院深圳先进技术研究院生物医学与健康工程研究所微创中心研究员聂泽东团队,在基于生理信息的无创血糖监测技术方面取得新进展。相关
    的头像 发表于 07-07 09:12 948次阅读
    深圳先进院在无创血糖监测<b class='flag-5'>研究</b><b class='flag-5'>方面</b><b class='flag-5'>取得</b>进展

    中山大学研制出超高灵敏度光学超声传感器阵列

    近日,中山大学电子与信息工程学院(微电子学院)教授李朝晖和副教授沈乐成率领的研究团队基于硫系微纳加工平台,成功研制出了包含15个微腔的超高灵敏度光学超声传感器阵列,并融合新型通信算法数字光频梳技术
    的头像 发表于 07-01 08:42 355次阅读

    中山大学王钢教授团队在NiO/β-Ga₂O₃异质结在功率器件领域的研究进展

    该综述总结了NiO/β-Ga2O3异质结在功率器件领域的发展现状,为之后设计高性能的NiO/β-Ga2O3异质结器件提供了参考,对β-Ga2O3双极型器件未来的发展起到了积极的作用。
    的头像 发表于 06-30 16:36 919次阅读
    <b class='flag-5'>中山大学</b>王钢教授团队在NiO/β-Ga₂O₃异质结在功率器件领域的<b class='flag-5'>研究</b>进展

    六六顺——东南大学文章总汇 | 科技老兵戴辉

    的课程和电子/无线电一样,当年有些大学的这个专业就设在电子工程系内,如清华大学和西安交通大学(简称医电)。94年我考入中山大学电子系读研究
    的头像 发表于 06-07 16:02 577次阅读
    六六顺——东南<b class='flag-5'>大学</b>文章总汇 | 科技老兵戴辉

    上海理工大学:太赫兹技术创新研究院在太赫兹超灵敏生物传感器方面取得新进展

    传感新品 【上海理工大学:太赫兹技术创新研究院在太赫兹超灵敏生物传感器方面取得新进展】 近日,上海理工大学太赫兹技术创新
    的头像 发表于 05-15 09:28 456次阅读
    上海理工<b class='flag-5'>大学</b>:太赫兹技术创新<b class='flag-5'>研究</b>院在太赫兹超灵敏生物传感器<b class='flag-5'>方面</b><b class='flag-5'>取得</b>新进展