0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

单片机串口发送数据很慢?这种方法帮助你提高!

jf_pJlTbmA9 来源:嵌入式资讯精选 作者:嵌入式资讯精选 2023-11-02 17:43 次阅读

本文介绍如何使用带FIFO的串口来减少接收中断次数,通过一种自定义通讯协议格式,给出帧打包方法;之后介绍一种特殊的串口数据发送方法,可在避免使用串口发送中断的情况下,提高系统的响应速度。

1. 简介

串口由于使用简单,价格低廉,配合RS485芯片可以实现长距离、抗干扰能力强的局域网络而被广泛使用。随着产品功能的增多,需要处理的任务也越来越复杂,系统任务也越来越需要及时响应。

绝大多数的现代单片机ARM7、Cortex-M3)串口都带有一定数量的硬件FIFO,本文将介绍如何使用硬件FIFO来减少接收中断次数,提高发送效率。在此之前,先来列举一下传统串口数据收发的不足之处:

(1)每接收一个字节数据,产生一次接收中断。不能有效的利用串口硬件FIFO,减少中断次数。

(2)应答数据采用等待发送的方法。由于串行数据传输的时间远远跟不上CPU的处理时间,等待串口发送完当前字节再发送下一字节会造成CPU资源浪费,不利于系统整体响应(在1200bps下,发送一字节大约需要10ms,如果一次发送几十个字节数据,CPU会长时间处于等待状态)。

(3)应答数据采用中断发送。增加一个中断源,增加系统的中断次数,这会影响系统整体稳定性(从可靠性角度考虑,中断事件应越少越好)。

(4)针对上述的不足之处,将结合一个常用自定义通讯协议,提供一个完整的解决方案。

2.串口FIFO

串口FIFO可以理解为串口专用的缓存,该缓存采用先进先出方式。数据接收FIFO和数据发送FIFO通常是独立的两个硬件。

串口接收的数据,先放入接收FIFO中,当FIFO中的数据达到触发值(通常触发值为1、2、4、8、14字节)或者FIFO中的数据虽然没有达到设定值但是一段时间(通常为3.5个字符传输时间)没有再接收到数据,则通知CPU产生接收中断;发送的数据要先写入发送FIFO,只要发送FIFO未空,硬件会自动发送FIFO中的数据。

写入发送FIFO的字节个数受FIFO最大深度影响,通常一次写入最多允许16字节。上述列举的数据跟具体的硬件有关,CPU类型不同,特性也不尽相同,使用前应参考相应的数据手册。

3.数据接收与打包

FIFO可以缓存串口接收到的数据,因此我们可以利用FIFO来减少中断次数。以NXPlpc1778芯片为例,接收FIFO的触发级别可以设置为1、2、4、8、14字节,推荐使用8字节或者14字节,这也是PC串口接收FIFO的默认值。

这样,当接收到大量数据时,每8个字节或者14个字节才会产生一次中断(最后一次接收除外),相比接收一个字节即产生一个中断,这种方法串口接收中断次数大大减少。

将接收FIFO设置为8或者14字节也十分简单,还是以lpc1778为例,只需要设置UART FIFO控制寄存器UnFCR即可。

接收的数据要符合通讯协议规定,数据与协议是密不可分的。通常我们需要将接收到的数据根据协议打包成一帧,然后交由上层处理。下面介绍一个自定义的协议帧格式,并给出一个通用打包成帧的方法。
自定义协议格式如图3-1所示。

poYBAGIB2MSACyc5AAAVsBQEc38093.png

帧首:通常是3~5个0xFF或者0xEE

地址号:要进行通讯的设备的地址编号,1字节

命令号:对应不同的功能,1字节

长度:数据区域的字节个数,1字节

数据:与具体的命令号有关,数据区长度可以为0,整个帧的长度不应超过256字节

校验:异或和校验(1字节)或者CRC16校验(2字节),本例使用CRC16校验

下面介绍如何将接收到的数据按照图3-1所示的格式打包成一帧。

3.1 定义数据结构

typedef struct 
{  
    uint8_t * dst_buf;                  //指向接收缓存  
    uint8_t sfd;                        //帧首标志,为0xFF或者0xEE  
    uint8_t sfd_flag;                   //找到帧首,一般是3~5个FF或EE  
    uint8_t sfd_count;                  //帧首的个数,一般3~5个  
    uint8_t received_len;               //已经接收的字节数  
    uint8_t find_fram_flag;             //找到完整帧后,置1  
    uint8_t frame_len;                  //本帧数据总长度,这个区域是可选的  
}find_frame_struct;

3.2 初始化数据结构,一般放在串口初始化中

/** 
* @brief    初始化寻找帧的数据结构 
* @param    p_fine_frame:指向打包帧数据结构体变量 
* @param    dst_buf:指向帧缓冲区 
* @param    sfd:帧首标志,一般为0xFF或者0xEE 
*/  
void init_find_frame_struct(find_frame_struct * p_find_frame,uint8_t *dst_buf,uint8_t sfd)  
{  
    p_find_frame->dst_buf=dst_buf;  
    p_find_frame->sfd=sfd;  
    p_find_frame->find_fram_flag=0;  
    p_find_frame->frame_len=10;       
    p_find_frame->received_len=0;  
    p_find_frame->sfd_count=0;  
    p_find_frame->sfd_flag=0;  
} 

3.3 数据打包程序

/** 
* @brief    寻找一帧数据  返回处理的数据个数 
* @param    p_find_frame:指向打包帧数据结构体变量 
* @param    src_buf:指向串口接收的原始数据 
* @param    data_len:src_buf本次串口接收到的原始数据个数 
* @param    sum_len:帧缓存的最大长度 
* @return   本次处理的数据个数 
*/  
uint32_t find_one_frame(find_frame_struct * p_find_frame,const uint8_t * src_buf,uint32_t data_len,uint32_t sum_len)  
{  
    uint32_t src_len=0;  
    while(data_len--)  
    {  
        if(p_find_frame ->sfd_flag==0)                        
        {   //没有找到起始帧首  
            if(src_buf[src_len++]==p_find_frame ->sfd)  
            {  
                p_find_frame ->dst_buf[p_find_frame ->received_len++]=p_find_frame ->sfd;  
                if(++p_find_frame ->sfd_count==5)          
                {  
                    p_find_frame ->sfd_flag=1;  
                    p_find_frame ->sfd_count=0;  
                    p_find_frame ->frame_len=10;  
                }  
            }  
            else  
            {  
                p_find_frame ->sfd_count=0;   
                p_find_frame ->received_len=0;   
            }  
        }  
        else   
        {   //是否是"长度"字节? Y->获取这帧的数据长度  
            if(7==p_find_frame ->received_len)                
            {  
                p_find_frame->frame_len=src_buf[src_len]+5+1+1+1+2; //帧首+地址号+命令号+数据长度+校验       
                if(p_find_frame->frame_len>=sum_len)  
                {   //这里处理方法根据具体应用不一定相同  
                    MY_DEBUGF(SLAVE_DEBUG,("数据长度超出缓存!n"));  
                    p_find_frame->frame_len= sum_len;       
                }  
            }  
              
            p_find_frame ->dst_buf[p_find_frame->received_len++]=src_buf[src_len++];                
            if(p_find_frame ->received_len==p_find_frame ->frame_len)                  
            {  
                p_find_frame ->received_len=0;              //一帧完成    
                p_find_frame ->sfd_flag=0;  
                p_find_frame ->find_fram_flag=1;                   
                return src_len;  
            }  
        }  
    }  
    p_find_frame ->find_fram_flag=0;  
    return src_len;  
} 

使用例子:

定义数据结构体变量:

find_frame_struct slave_find_frame_srt;

定义接收数据缓冲区:

#define SLAVE_REC_DATA_LEN  128
uint8_t slave_rec_buf[SLAVE_REC_DATA_LEN];

在串口初始化中调用结构体变量初始化函数:

init_find_frame_struct( slave_find_frame_srt,slave_rec_buf,0xEE);

在串口接收中断中调用数据打包函数:

find_one_frame( slave_find_frame_srt,tmp_rec_buf,data_len,SLAVE_REC_DATA_LEN);

其中,rec_buf是串口接收临时缓冲区,data_len是本次接收的数据长度。

4.数据发送

前文提到,传统的等待发送方式会浪费CPU资源,而中断发送方式虽然不会造成CPU资源浪费,但又增加了一个中断源。在我们的使用中发现,定时器中断是几乎每个应用都会使用的,我们可以利用定时器中断以及硬件FIFO来进行数据发送,通过合理设计后,这样的发送方法即不会造成CPU资源浪费,也不会多增加中断源和中断事件。

需要提前说明的是,这个方法并不是对所有应用都合适,对于那些没有开定时器中断的应用本方法当然是不支持的,另外如果定时器中断间隔较长而通讯波特率又特别高的话,本方法也不太适用。

公司目前使用的通讯波特率一般比较小(1200bps、2400bps),在这些波特率下,定时器间隔为10ms以下(含10ms)就能满足。如果定时器间隔为1ms以下(含1ms),是可以使用115200bps的。

本方法主要思想是:定时器中断触发后,判断是否有数据要发送,如果有数据要发送并且满足发送条件,则将数据放入发送FIFO中,对于lpc1778来说,一次最多可以放16字节数据。之后硬件会自动启动发送,无需CPU参与。

下面介绍如何使用定时器发送数据,硬件载体为RS485。因为发送需要操作串口寄存器以及RS485方向控制引脚,需跟硬件密切相关,以下代码使用的硬件为lpc1778,但思想是通用的。

4.1 定义数据结构

/*串口帧发送结构体*/  
typedef struct 
{  
    uint16_t send_sum_len;          //要发送的帧数据长度  
    uint8_t  send_cur_len;          //当前已经发送的数据长度  
    uint8_t  send_flag;             //是否发送标志  
    uint8_t * send_data;            //指向要发送的数据缓冲区  
}uart_send_struct;  

4.2 定时处理函数

/** 
* @brief    定时发送函数,在定时器中断中调用,不使用发送中断的情况下减少发送等待 
* @param    UARTx:指向硬件串口寄存器基地址 
* @param    p:指向串口帧发送结构体变量 
*/  
#define FARME_SEND_FALG 0x5A          
#define SEND_DATA_NUM   12  
static void uart_send_com(LPC_UART_TypeDef *UARTx,uart_send_struct *p)  
{  
    uint32_t i;  
    uint32_t tmp32;  
      
    if(UARTx->LSR  (0x01<<6))                      //发送为空  
    {         
        if(p->send_flag==FARME_SEND_FALG)  
        {                          
            RS485ClrDE;                             // 置485为发送状态  
              
            tmp32=p->send_sum_len-p->send_cur_len;  
            if(tmp32>SEND_DATA_NUM)                 //向发送FIFO填充字节数据  
            {  
                for(i=0;iTHR=p->send_data[p->send_cur_len++];  
                }  
            }  
            else  
            {  
                for(i=0;iTHR=p->send_data[p->send_cur_len++];  
                }  
                p->send_flag=0;                      
            }  
        }  
        else  
        {  
            RS485SetDE;  
        }  
    }  
}  

其中,RS485ClrDE为宏定义,设置RS485为发送模式;RS485SetDE也为宏定义,设置RS485为接收模式。

使用例子:

定义数据结构体变量:

uart_send_struct uart0_send_str;

定义发送缓冲区:

uint8_t uart0_send_buf[UART0_SEND_LEN];

根据使用的硬件串口,对定时处理函数做二次封装:

void uart0_send_data(void)
{
 uart_send_com(LPC_UART0, uart0_send_str);
}

将封装函数uart0_send_data();放入定时器中断处理函数中;

在需要发送数据的地方,设置串口帧发送结构体变量:

uart0_send_str.send_sum_len=data_len;      //data_len为要发送的数据长度
uart0_send_str.send_cur_len=0;             //固定为0
uart0_send_str.send_data=uart0_send_buf;   //绑定发送缓冲区
uart0_send_str.send_flag=FARME_SEND_FALG;  //设置发送标志

5. 总结

本文主要讨论了一种高效的串口数据收发方法,并给出了具体的代码实现。在当前处理器任务不断增加的情况下,提供了一个占用资源少,可提高系统整体性能的新的思路。

来源:嵌入式资讯精选(作者:张巧龙)


审核编辑:汤梓红
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 单片机
    +关注

    关注

    6001

    文章

    43978

    浏览量

    620862
  • fifo
    +关注

    关注

    3

    文章

    369

    浏览量

    43069
  • 串口
    +关注

    关注

    14

    文章

    1483

    浏览量

    74514
收藏 人收藏

    评论

    相关推荐

    51单片机模拟串口方法

    51单片机模拟串口方法随着单片机的使用日益频繁,用其作前置进行采集和通信也常见于各种应用,一般是利用前置
    发表于 09-17 15:21

    51单片机串口通信的发送与接收

    本帖最后由 eehome 于 2013-1-5 09:50 编辑 51单片机串口,是个全双工的串口发送数据的同时,还可以接收
    发表于 11-01 18:00

    帮助,51单片机串口问题!!

    单片机在波特率已设置,串口允许中断都打开的情况下,但是我没给单片发送数据为什么单片机RI也会置一
    发表于 12-15 17:15

    单片机应用简单技巧 - 串口

    ,后面专门介绍环形缓冲和乒乓缓冲的方法,这里暂不做介绍。串口单片机开发、嵌入式开发中不可或缺的调试工具,本文介绍的技巧思路很容易移植到其他平台上,用上它,可以调高开发效率,希望我的经验思路能够
    发表于 09-18 10:47

    单片机通过串口高速发送数据

    单片机串口发送数据,属性节点读取到的字节特别大65536个,但是VISA实际只读到14个字节,怎么解决呢?如何提高程序的运行速度,求各位帮
    发表于 05-18 20:28

    51单片机模拟串口的三种方法

    51单片机模拟串口的三种方法随着单片机的使用日益频繁,用其作前置进行采集和通信也常见于各种应用,一般是利用前置
    发表于 05-29 14:14

    如何通过串口单片机发送数据

    文章目录1.简介2. 功能实现1.简介通过串口单片机发送数据,然后 数据 +1 返回串口2.
    发表于 12-02 08:27

    单片机串口接收的时候常用的数据处理方法有哪些

    单片机串口受到别的信号干扰的时候,容易出现数据错误,特别是串口发送的第一个字节和最后一个字节。一旦出现
    发表于 02-18 06:57

    单片机I/O口模拟串口接收和发送程序

    单片机I/O口模拟串口接收和发送
    发表于 10-14 09:07 8次下载

    单片机入门汇编之单片机接收计算机串口发送数据程序免费下载

    单片机入门汇编之单片机接收计算机串口发送数据程序免费下载。
    发表于 03-07 14:54 13次下载
    <b class='flag-5'>单片机</b>入门汇编之<b class='flag-5'>单片机</b>接收计算机<b class='flag-5'>串口</b><b class='flag-5'>发送</b>的<b class='flag-5'>数据</b>程序免费下载

    单片机串口发送16进制、ASCII

    单片机串口发送16进制、ASCII单片机串口是,你给的是什么格式他就发送什么格式,在使用
    发表于 11-17 10:36 26次下载
    <b class='flag-5'>单片机</b><b class='flag-5'>串口</b><b class='flag-5'>发送</b>16进制、ASCII

    单片机串口发送数据很慢这种方法帮助你提高

    大家好,我是张巧龙,本文介绍如何使用带FIFO的串口来减少接收中断次数,通过一种自定义通讯协议格式,给出帧打包方法;之后介绍一种特殊的串口数据发送
    发表于 12-02 14:36 0次下载
    <b class='flag-5'>单片机</b><b class='flag-5'>串口</b><b class='flag-5'>发送</b><b class='flag-5'>数据</b><b class='flag-5'>很慢</b>?<b class='flag-5'>这种方法</b><b class='flag-5'>帮助你</b><b class='flag-5'>提高</b>!

    单片机串口数据处理(1)——串口中断发送数据

    实时性在嵌入式开发中的非常重要,优化MCU串口传输处理方式可以提高嵌入式系统的实时性。在互联网上学习并亲自实验(基于STM32单片机)后,我将分两次介绍优化MCU串口收发
    发表于 12-08 11:36 2次下载
    <b class='flag-5'>单片机</b><b class='flag-5'>串口</b><b class='flag-5'>数据</b>处理(1)——<b class='flag-5'>串口</b>中断<b class='flag-5'>发送</b><b class='flag-5'>数据</b>

    单片机串口发送数据很慢这种方法帮助你提高

    本文介绍如何使用带FIFO的串口来减少接收中断次数,通过一种自定义通讯协议格式,给出帧打包方法;之后介绍一种特殊的串口数据发送
    发表于 02-08 15:17 1次下载
    <b class='flag-5'>单片机</b><b class='flag-5'>串口</b><b class='flag-5'>发送</b><b class='flag-5'>数据</b><b class='flag-5'>很慢</b>?<b class='flag-5'>这种方法</b><b class='flag-5'>帮助你</b><b class='flag-5'>提高</b>!

    单片机串口通信的接收与发送

    的原理。串口通信是通过发送和接收两根线来实现的,分别为发送线(Tx)和接收线(Rx)。当单片机发送数据
    的头像 发表于 12-20 14:03 1570次阅读