0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

非常实用,推荐一种面向对象思维的单片机程序框架

jf_pJlTbmA9 来源:小麦大叔 作者:小麦大叔 2023-10-24 18:03 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

程序架构重要性

很多人尤其是初学者在写代码的时候往往都是想一点写一点,最开始没有一个整体的规划,导致后面代码越写越乱,bug不断。

最终代码跑起来看似没有问题(有可能也真的没有问题),但是系统的可扩展性很差,添加一个功能的时候会浪费大量的时间,甚至导致整个代码的崩溃。

所以,在一个项目开始的时候多花一些时间在代码的架构设计上是十分有必要的。代码架构确定好了之后你会发现敲代码的时候会特别快,并且在后期调试的时候也不会像无头苍蝇一样胡乱找问题。当然,调试也是一门技术。

在学习实时操作系统的过程中,发现实时操作系统框架与个人的业务代码之间的耦合性就非常低,都是只需要将业务代码通过一定的接口函数注册好后就交给操作系统托管了,十分方便。

但是操作系统的调度过于复杂,这里就使用操作系统的思维方式来重构这个时间片轮询框架。实现该框架的完全解耦,用户只需要包含头文件,并且在使用过程中不需要改动已经写好的库文件。

Demo

首先来个demo,该demo是使用电脑开两个线程:一个线程模拟单片机定时器中断产生时间片轮询个时钟,另一个线程则模拟主函数中一直运行的时间片轮询调度程序。

#include
#include
#include
#include"timeslice.h"

//创建5个任务对象
TimesilceTaskObjtask_1,task_2,task_3,task_4,task_5;

//具体的任务函数
voidtask1_hdl()
{
printf(">>task1isrunning...n");
}

voidtask2_hdl()
{
printf(">>task2isrunning...n");
}

voidtask3_hdl()
{
printf(">>task3isrunning...n");
}

voidtask4_hdl()
{
printf(">>task4isrunning...n");
}

voidtask5_hdl()
{
printf(">>task5isrunning...n");
}

//初始化任务对象,并且将任务添加到时间片轮询调度中
voidtask_init()
{
timeslice_task_init( task_1,task1_hdl,1,10);
timeslice_task_init( task_2,task2_hdl,2,20);
timeslice_task_init( task_3,task3_hdl,3,30);
timeslice_task_init( task_4,task4_hdl,4,40);
timeslice_task_init( task_5,task5_hdl,5,50);
timeslice_task_add( task_1);
timeslice_task_add( task_2);
timeslice_task_add( task_3);
timeslice_task_add( task_4);
timeslice_task_add( task_5);
}

//开两个线程模拟在单片机上的运行过程
voidtimeslice_exec_thread()
{
while(true)
{
timeslice_exec();
}
}

voidtimeslice_tick_thread()
{
while(true)
{
timeslice_tick();
Sleep(10);
}
}

intmain()
{
task_init();

printf(">>tasknum:%dn",timeslice_get_task_num());
printf(">>tasklen:%dn",timeslice_get_task_timeslice_len( task_3));

timeslice_task_del( task_2);
printf(">>delettask2n");
printf(">>task2isexist:%dn",timeslice_task_isexist( task_2));

printf(">>tasknum:%dn",timeslice_get_task_num());
timeslice_task_del( task_5);printf(">>delettask5n");
printf(">>tasknum:%dn",timeslice_get_task_num());
printf(">>task3isexist:%dn",timeslice_task_isexist( task_3));

timeslice_task_add( task_2);printf(">>addtask2n");
printf(">>task2isexist:%dn",timeslice_task_isexist( task_2));

timeslice_task_add( task_5);printf(">>addtask5n");
printf(">>tasknum:%dn",timeslice_get_task_num());

printf("nn========timeslicerunning===========n");

std::threadthread_1(timeslice_exec_thread);
std::threadthread_2(timeslice_tick_thread);

thread_1.join();
thread_2.join();

return0;
}

运行结果如下:

poYBAGGnJ7OAZ5XZAACMwYJDoAU530.png

由以上例子可见,这个框架使用十分方便,甚至可以完全不知道其原理,仅仅通过几个简单的接口就可以迅速创建任务并加入到时间片轮询的框架中,十分好用。

时间片轮询架构

其实该部分主要使用了面向对象的思维,使用结构体作为对象,并使用结构体指针作为参数传递,这样作可以节省资源,并且有着极高的运行效率。

其中最难的部分是侵入式链表的使用,这种链表在一些操作系统内核中使用十分广泛,这里是参考RT-Thread实时操作系统中的侵入式链表实现。

h文件:

#ifndef_TIMESLICE_H
#define_TIMESLICE_H

#include"./list.h"

typedefenum
{
TASK_STOP,
TASK_RUN
}IsTaskRun;

typedefstructtimesilce
{
unsignedintid;
void(*task_hdl)(void);
IsTaskRunis_run;
unsignedinttimer;
unsignedinttimeslice_len;
ListObjtimeslice_task_list;
}TimesilceTaskObj;

voidtimeslice_exec(void);
voidtimeslice_tick(void);
voidtimeslice_task_init(TimesilceTaskObj*obj,void(*task_hdl)(void),unsignedintid,unsignedinttimeslice_len);
voidtimeslice_task_add(TimesilceTaskObj*obj);
voidtimeslice_task_del(TimesilceTaskObj*obj);
unsignedinttimeslice_get_task_timeslice_len(TimesilceTaskObj*obj);
unsignedinttimeslice_get_task_num(void);
unsignedchartimeslice_task_isexist(TimesilceTaskObj*obj);

#endifc文件:
#include"./timeslice.h"

staticLIST_HEAD(timeslice_task_list);

voidtimeslice_exec()
{
ListObj*node;
TimesilceTaskObj*task;

list_for_each(node, timeslice_task_list)
{

task=list_entry(node,TimesilceTaskObj,timeslice_task_list);
if(task->is_run==TASK_RUN)
{
task->task_hdl();
task->is_run=TASK_STOP;
}
}
}

voidtimeslice_tick()
{
ListObj*node;
TimesilceTaskObj*task;

list_for_each(node, timeslice_task_list)
{
task=list_entry(node,TimesilceTaskObj,timeslice_task_list);
if(task->timer!=0)
{
task->timer--;
if(task->timer==0)
{
task->is_run=TASK_RUN;
task->timer=task->timeslice_len;
}
}
}
}

unsignedinttimeslice_get_task_num()
{
returnlist_len( timeslice_task_list);
}

voidtimeslice_task_init(TimesilceTaskObj*obj,void(*task_hdl)(void),unsignedintid,unsignedinttimeslice_len)
{
obj->id=id;
obj->is_run=TASK_STOP;
obj->task_hdl=task_hdl;
obj->timer=timeslice_len;
obj->timeslice_len=timeslice_len;
}

voidtimeslice_task_add(TimesilceTaskObj*obj)
{
list_insert_before( timeslice_task_list, obj->timeslice_task_list);
}

voidtimeslice_task_del(TimesilceTaskObj*obj)
{
if(timeslice_task_isexist(obj))
list_remove( obj->timeslice_task_list);
else
return;
}

unsignedchartimeslice_task_isexist(TimesilceTaskObj*obj)
{
unsignedcharisexist=0;
ListObj*node;
TimesilceTaskObj*task;

list_for_each(node, timeslice_task_list)
{
task=list_entry(node,TimesilceTaskObj,timeslice_task_list);
if(obj->id==task->id)
isexist=1;
}

returnisexist;
}

unsignedinttimeslice_get_task_timeslice_len(TimesilceTaskObj*obj)
{
returnobj->timeslice_len;
}

底层侵入式双向链表

该链表是linux内核中使用十分广泛,也十分经典,其原理具体可以参考文章:

https://www.cnblogs.com/skywang12345/p/3562146.html

h文件:

#ifndef_LIST_H
#define_LIST_H
#defineoffset_of(type,member)(unsignedlong) ((type*)0)->member
#definecontainer_of(ptr,type,member)((type*)((char*)(ptr)-offset_of(type,member)))

typedefstructlist_structure
{
structlist_structure*next;
structlist_structure*prev;
}ListObj;

#defineLIST_HEAD_INIT(name){ (name), (name)}
#defineLIST_HEAD(name)ListObjname=LIST_HEAD_INIT(name)

voidlist_init(ListObj*list);
voidlist_insert_after(ListObj*list,ListObj*node);
voidlist_insert_before(ListObj*list,ListObj*node);
voidlist_remove(ListObj*node);
intlist_isempty(constListObj*list);
unsignedintlist_len(constListObj*list);

#definelist_entry(node,type,member)
container_of(node,type,member)

#definelist_for_each(pos,head)
for(pos=(head)->next;pos!=(head);pos=pos->next)

#definelist_for_each_safe(pos,n,head)
for(pos=(head)->next,n=pos->next;pos!=(head);
pos=n,n=pos->next)

#endif

c文件:

#include"list.h"

voidlist_init(ListObj*list)
{
list->next=list->prev=list;
}

voidlist_insert_after(ListObj*list,ListObj*node)
{
list->next->prev=node;
node->next=list->next;

list->next=node;
node->prev=list;
}

voidlist_insert_before(ListObj*list,ListObj*node)
{
list->prev->next=node;
node->prev=list->prev;

list->prev=node;
node->next=list;
}

voidlist_remove(ListObj*node)
{
node->next->prev=node->prev;
node->prev->next=node->next;

node->next=node->prev=node;
}

intlist_isempty(constListObj*list)
{
returnlist->next==list;
}

unsignedintlist_len(constListObj*list)
{
unsignedintlen=0;
constListObj*p=list;
while(p->next!=list)
{
p=p->next;
len++;
}

returnlen;
}

到此,一个全新的,完全解耦的,十分方便易用时间片轮询框架完成。

来源:小麦大叔

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 单片机
    +关注

    关注

    6074

    文章

    45340

    浏览量

    663617
  • 框架
    +关注

    关注

    0

    文章

    404

    浏览量

    18318
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    面向单片机、事件驱动的嵌入式开发平台介绍

    EventOS,是面向单片机、事件驱动的嵌入式开发平台。它主要有两大技术特色:是事件驱动,二是超轻量。EventOS以及其母项目EventOS,目标是开发
    发表于 12-05 06:26

    为什么单片机还在用C语言编程?

    最适合单片机开发的编程语言实在太过晦涩难懂,学习起来非常的不方便,并且每一种单片机的汇编指令有很大区别,所以想把
    发表于 11-28 07:37

    单片机开发中常用的三软件架构介绍

    // ... 找零逻辑 P2 = 0xFF;// 关闭机械臂} 6.面向对象架构STM32的库,就是一种面向对象的架构。 不过在
    发表于 11-26 08:05

    PYQT 应用程序框架及开发工具

    大家好,本团队此次分享的内容为开发过程中使用到的PYQT 应用程序框架及开发工具。 pYqt 是个多平台的 python 图形用户界面应用程序
    发表于 10-29 07:15

    单片机个承载科技与工程思维的核心平台

    在现代社会中,科技的快速发展推动了各个行业和技术的革新。单片机(Single Chip Computer)作为一种集成化的电子系统,正在逐渐成为连接数字世界与物理世界的桥梁。无论是智能家居、自动驾驶
    的头像 发表于 09-29 01:07 367次阅读

    单片机烧录原理是怎样的?辉芒微单片机烧录程序详细步骤讲解

    烧录(Programming)就是把 .hex/.bin 文件里的机器码搬运进单片机片内 Flash 的过程。辉芒微(FMD)单片机内部有块 自举 BootROM,上电时会先跑这段程序
    的头像 发表于 09-17 16:14 1391次阅读
    <b class='flag-5'>单片机</b>烧录原理是怎样的?辉芒微<b class='flag-5'>单片机</b>烧录<b class='flag-5'>程序</b>详细步骤讲解

    一种适用于动态环境的自适应先验场景-对象SLAM框架

    由于传统视觉SLAM在动态场景中容易会出现严重的定位漂移,本文提出了一种新颖的基于场景-对象的可靠性评估框架,该框架通过当前帧质量指标以及相对于可靠参考帧的场景变化,全面评估SLAM的
    的头像 发表于 08-19 14:17 642次阅读
    <b class='flag-5'>一种</b>适用于动态环境的自适应先验场景-<b class='flag-5'>对象</b>SLAM<b class='flag-5'>框架</b>

    单片机原理及应用详解

    单片机(Microcontroller Unit, MCC)  是一种集成计算机核心功能(CPU、存储器、I/O接口等)的微型芯片,广泛应用于嵌入式系统中。以下是其原理及应用的详细介绍:
    的头像 发表于 08-11 13:57 1553次阅读

    怎么测单片机系统频率

    单片机系统频率是指单片机工作时的时钟频率,它直接影响单片机的运行速度和处理能力,准确测量系统频率对单片机应用开发、程序调试和性能优化具有重要
    的头像 发表于 07-25 11:39 477次阅读

    单片机怎么烧程序

    单片机程序是将编写好的程序代码写入单片机内部存储单元,让单片机按照预设逻辑工作的过程,是单片机
    的头像 发表于 07-23 11:47 652次阅读

    STC单片机范例程序

    电子发烧友网站提供《STC单片机范例程序.zip》资料免费下载
    发表于 06-04 16:27 8次下载

    单片机和伺服有什么区别

    : 1. 定义与功能 特性 单片机(Microcontroller) 伺服系统(Servo System) 定义 一种集成CPU、内存、I/O接口的微型计算机芯片,用于控制设备。 一种由伺服电机、编码器
    的头像 发表于 05-26 09:18 584次阅读

    一种新型直流电机控制器

    以前控制直流电机多由单片机完成。该方式缺点是接口繁琐、速度慢,且不易在高温、高压等恶劣环境下工作[1]。采用一种新型直流电机控制器——DSP 控制器解决了单片机控制的缺点,其具备很多优点,该控制器
    发表于 03-25 15:25

    单片机Debug工具性能对比 单片机调试常用命令

    单片机(Microcontroller Unit, MCU)调试是嵌入式开发中的个重要环节,它帮助开发者发现和修复代码中的错误,优化程序性能。不同的单片机和开发环境可能使用不同的调试
    的头像 发表于 12-19 09:56 2166次阅读

    SSM框架的源码解析与理解

    SSM框架(Spring + Spring MVC + MyBatis)是一种在Java开发中常用的轻量级企业级应用框架。它通过整合Spring、Spring MVC和MyBatis三个框架
    的头像 发表于 12-17 09:20 1419次阅读