0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

新型光子偏振片照亮量子通信之路

IEEE电气电子工程师 来源:IEEE电气电子工程师 2023-09-14 16:39 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

洛斯阿拉莫斯国家实验室(Los Alamos National Laboratory)的研究人员开发了一种技术,可以比现有方法更容易、更便宜地产生偏振光子。该技术使用原子力显微镜在原子薄材料的两层堆叠中形成压痕。压痕产生小磁场,使系统发射的光子极化。如果扩大规模,这种方法可能会加速量子通信的实现。

量子通信使用光子来携带信息,就像经典通信使用电子一样。但是,虽然经典计算机通过打开或关闭电流来编码信息,但量子计算机是通过改变每个光子的电磁波的方向来编码信息的,即光子的偏振。以这种方式编码信息可以利用叠加和纠缠等量子现象来获得新的通信特征,比如量子网络固有的安全性。

开发一种有效的改变光子偏振的方法是实现量子通信的基本步骤之一。目前的方法既复杂又昂贵。有些需要非常高的精度,例如将量子发射器(发射单光子的设备)与能够影响其偏振的纳米级结构连接起来。其他的需要大量的能量,比如冷却到液氦温度的巨型磁铁,它可以通过改变光子的能量状态来诱导光子极化。洛斯阿拉莫斯综合纳米技术中心的科学家、该研究的合著者Han Htoon说,洛斯阿拉莫斯国家实验室的一个这样的磁铁消耗了大量的能量,需要一个房子大小的发电机

“What we think is happening is the indentations not only created quantum emitters in the tungsten diselenide—it also disrupted the magnetic aura in nickel phosphorus trisulfide, such that it creates tiny little magnets.”

—HAN HTOON, CENTER FOR INTEGRATED NANOTECHNOLOGIES, LOS ALAMOS

该研究的研究人员通过将过程简化为一个既能发射光子又能影响光子偏振的单一设备,大大降低了光子偏振的复杂性和能量使用。该器件由两种超薄材料堆叠而成:顶层由二硒化钨组成,这种材料因其量子发光特性而常用;底层由镍磷三硫化物组成,它非常稳定,也为器件提供了重要的磁性来源。因为光子发射得离铁磁性材料很近,所以这种磁性足以引起光子偏振。

Htoon说,奇怪的是,镍磷三硫化物通常缺乏任何铁磁性。但研究人员发现,当使用原子力显微镜在双层设备上布满纳米级压痕时,它会在表面产生微小的磁铁。

研究人员认为,之所以会出现这种铁磁特性,是因为压痕会对层状材料产生应变,并改变其能量分布。镍磷三硫化物材料中的电子自旋最初是随机的,相互抵消,通过压痕排列,产生了铁磁性。

Htoon说:“因此,原则上,如果你把二硒化钨放在镍磷三硫化物上,我们应该看不到任何效果——实际上,在我们的第一个实验中,我们确实什么都没看到。Htoon说:“因此,原则上,如果你把二硒化钨放在镍磷三硫化物上,我们应该看不到任何效果——实际上,在我们的第一个实验中,我们确实什么都没看到。”

正如Htoon所说,压痕最初是为了使顶层材料通过量子约束过程发射光子,当电子被包含在一个小空间中并被激光激发时,就会产生光子发射。但幸运的是,压痕过程也赋予了该器件铁磁性。因此,研究人员能够制造出一种既能发射光子又能诱导光子偏振的单一设备。

目前,诱导的光子偏振是随机的,无法控制哪些光子将表现出右圆偏振或左圆偏振。但Htoon预测,光子极化最终可能会被调制,例如,通过使用微波或电来操纵它们。这增加了创造一种高效、经济高效的设备的可能性,这种设备不仅可以产生偏振光子,还可以精确地指定偏振应该是什么。

Htoon说:“在这种情况下,我们将得到一个完全‘二合一’的设备——一个可以产生光子并同时对其进行编码的设备。这将是未来的方向。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子通信
    +关注

    关注

    3

    文章

    302

    浏览量

    25323
  • 磁性
    +关注

    关注

    0

    文章

    81

    浏览量

    13647
  • 偏振片
    +关注

    关注

    0

    文章

    5

    浏览量

    2663
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    解决方案丨以光谱共焦技术破解光学膜材测量痛点,助力 AR/VR/XR 体验革新

    偏振片(也称为偏光膜或偏光)在AR/VR/XR眼镜中实现着提升图像清晰度与对比度,过滤杂乱光线,优化视觉效果,实现立体视觉等重要作用。 而在偏振片生产过程中, 厚度 是最基础且关键的尺寸指标。当前
    的头像 发表于 12-04 08:10 16次阅读
    解决方案丨以光谱共焦技术破解光学膜材测量痛点,助力 AR/VR/XR 体验革新

    光子精密光谱共焦传感器提升VR眼镜偏振片工艺质量与生产效率

    为解决这一痛点,光子精密专为VR,AR眼镜等高端光学器件推出了高精度检测方案,能非接触、高精度地解决当前偏振片、反射、Pancake分光镜厚度检测面临的多种难题。
    的头像 发表于 11-28 13:39 85次阅读
    <b class='flag-5'>光子</b>精密光谱共焦传感器提升VR眼镜<b class='flag-5'>偏振片</b>工艺质量与生产效率

    金升阳党委“光源行动”启程:以责任之光照亮求学之路

    金升阳党委“光源行动”启程:以责任之光照亮求学之路
    的头像 发表于 09-08 15:12 387次阅读
    金升阳党委“光源行动”启程:以责任之光<b class='flag-5'>照亮</b>求学<b class='flag-5'>之路</b>

    量子通信介绍

    实验室致力于理解、控制和开发量子研究的应用案例。在这个特定的项目中,马滕·范德霍芬正在表征和研究金刚石纳米结构中颜色中心的行为。这些颜色中心是极其稳定的单光子源,可以用来构建量子传感器或具有高
    的头像 发表于 06-20 09:16 419次阅读
    <b class='flag-5'>量子</b><b class='flag-5'>通信</b>介绍

    浮思特 | 超导与半导体单光子探测器:量子通信中的技术博弈

    近日,英国创新署宣布启动MARCONI项目,旨在研发量子密钥分发(QKD)接收器。面对当前网络安全威胁,该机构正通过两项技术推动QKD网络建设,以期构建覆盖英国的全域安全量子通信网络。作为终端设备
    的头像 发表于 05-22 13:42 856次阅读
    浮思特 | 超导与半导体单<b class='flag-5'>光子</b>探测器:<b class='flag-5'>量子</b><b class='flag-5'>通信</b>中的技术博弈

    光学实验教具应用:光的偏振实验

    VirtualLab Fusion中搭建实验光路 图2.(左)两偏振片平行 图3.(右)两偏振片成45°角 图4.沿x轴一维曲线叠加(蓝色为两偏振片平行,红色为两偏振片45°夹角
    发表于 05-08 08:53

    FRED应用:颜色分析

    的波长依赖性。 案例 FRED中可以指定几种膜层类型,例如采样膜层,薄膜膜系,四分之一波长单层膜层,一般采样膜层(入射角,波长和偏振相关),偏振片/波膜层(琼斯矩阵) 和脚本膜层。 在此案例中
    发表于 04-28 10:13

    捕捉光的量子态:单光子信号验证实验揭秘

    01背景介绍在现代量子技术领域,单光子作为量子信息的最小载体,其精准操控与探测技术已成为量子通信网络建设、
    的头像 发表于 04-02 17:26 890次阅读
    捕捉光的<b class='flag-5'>量子</b>态:单<b class='flag-5'>光子</b>信号验证实验揭秘

    FRED应用:颜色分析

    的波长依赖性。 案例 FRED中可以指定几种膜层类型,例如采样膜层,薄膜膜系,四分之一波长单层膜层,一般采样膜层(入射角,波长和偏振相关),偏振片/波膜层(琼斯矩阵) 和脚本膜层。 在此案例中
    发表于 03-28 08:51

    JCMSuite应用-利用微柱和量子点产生单光子

    这个例子的灵感来自Gregersen等人[1],其中将量子点放置在微柱中以产生单光子源。但是,我们简化了问题,以便3D计算可以在笔记本电脑上流畅地运行: 微腔的几何形状 下图显示了放置在腔中心的x
    发表于 03-24 09:05

    FRED应用:真实玻片设置

    简介 FRED具备通过光学系统模拟光线偏振的能力。光源可以是随机偏振、圆偏振或线偏振。过滤或控制偏振的光学元件,如双折射波
    发表于 03-06 08:59

    FRED应用:双折射晶体偏振干涉效应

    方向是在xy平面且与x轴夹角45度,所有光线的反向延长线指向一点。接下来光线经过方解石平板,厚2mm,光轴方向沿z 轴。然后光线通过偏振片偏振片方向与光源方向垂直(xy 平面,与x 夹角-45度
    发表于 01-22 08:50

    量子通信量子计算的关系

    量子通信量子计算是两个紧密相连的领域,它们之间存在密切的关系,具体表现在以下几个方面: 一、基本概念 量子通信 :是利用
    的头像 发表于 12-19 15:53 2133次阅读

    量子通信的基本原理 量子通信网络的构建

    量子通信的基本原理 1. 量子叠加原理 量子叠加原理是量子通信的基础之一。在
    的头像 发表于 12-19 15:50 3546次阅读

    偏振分色

    这个例子说明了光通过双折射元件会造成空间色彩分离。偏振白光入射到一个用方解石(一种单轴晶体)做的简单镜头上,汇聚的光束继续通过波偏振元器件上,被屏幕拦截。FRED中的彩色图像特征用来显示空间光谱
    发表于 12-12 10:31