0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

新型光子偏振片照亮量子通信之路

IEEE电气电子工程师 来源:IEEE电气电子工程师 2023-09-14 16:39 次阅读

洛斯阿拉莫斯国家实验室(Los Alamos National Laboratory)的研究人员开发了一种技术,可以比现有方法更容易、更便宜地产生偏振光子。该技术使用原子力显微镜在原子薄材料的两层堆叠中形成压痕。压痕产生小磁场,使系统发射的光子极化。如果扩大规模,这种方法可能会加速量子通信的实现。

量子通信使用光子来携带信息,就像经典通信使用电子一样。但是,虽然经典计算机通过打开或关闭电流来编码信息,但量子计算机是通过改变每个光子的电磁波的方向来编码信息的,即光子的偏振。以这种方式编码信息可以利用叠加和纠缠等量子现象来获得新的通信特征,比如量子网络固有的安全性。

开发一种有效的改变光子偏振的方法是实现量子通信的基本步骤之一。目前的方法既复杂又昂贵。有些需要非常高的精度,例如将量子发射器(发射单光子的设备)与能够影响其偏振的纳米级结构连接起来。其他的需要大量的能量,比如冷却到液氦温度的巨型磁铁,它可以通过改变光子的能量状态来诱导光子极化。洛斯阿拉莫斯综合纳米技术中心的科学家、该研究的合著者Han Htoon说,洛斯阿拉莫斯国家实验室的一个这样的磁铁消耗了大量的能量,需要一个房子大小的发电机。

“What we think is happening is the indentations not only created quantum emitters in the tungsten diselenide—it also disrupted the magnetic aura in nickel phosphorus trisulfide, such that it creates tiny little magnets.”

—HAN HTOON, CENTER FOR INTEGRATED NANOTECHNOLOGIES, LOS ALAMOS

该研究的研究人员通过将过程简化为一个既能发射光子又能影响光子偏振的单一设备,大大降低了光子偏振的复杂性和能量使用。该器件由两种超薄材料堆叠而成:顶层由二硒化钨组成,这种材料因其量子发光特性而常用;底层由镍磷三硫化物组成,它非常稳定,也为器件提供了重要的磁性来源。因为光子发射得离铁磁性材料很近,所以这种磁性足以引起光子偏振。

Htoon说,奇怪的是,镍磷三硫化物通常缺乏任何铁磁性。但研究人员发现,当使用原子力显微镜在双层设备上布满纳米级压痕时,它会在表面产生微小的磁铁。

研究人员认为,之所以会出现这种铁磁特性,是因为压痕会对层状材料产生应变,并改变其能量分布。镍磷三硫化物材料中的电子自旋最初是随机的,相互抵消,通过压痕排列,产生了铁磁性。

Htoon说:“因此,原则上,如果你把二硒化钨放在镍磷三硫化物上,我们应该看不到任何效果——实际上,在我们的第一个实验中,我们确实什么都没看到。Htoon说:“因此,原则上,如果你把二硒化钨放在镍磷三硫化物上,我们应该看不到任何效果——实际上,在我们的第一个实验中,我们确实什么都没看到。”

正如Htoon所说,压痕最初是为了使顶层材料通过量子约束过程发射光子,当电子被包含在一个小空间中并被激光激发时,就会产生光子发射。但幸运的是,压痕过程也赋予了该器件铁磁性。因此,研究人员能够制造出一种既能发射光子又能诱导光子偏振的单一设备。

目前,诱导的光子偏振是随机的,无法控制哪些光子将表现出右圆偏振或左圆偏振。但Htoon预测,光子极化最终可能会被调制,例如,通过使用微波或电来操纵它们。这增加了创造一种高效、经济高效的设备的可能性,这种设备不仅可以产生偏振光子,还可以精确地指定偏振应该是什么。

Htoon说:“在这种情况下,我们将得到一个完全‘二合一’的设备——一个可以产生光子并同时对其进行编码的设备。这将是未来的方向。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子通信
    +关注

    关注

    3

    文章

    286

    浏览量

    24036
  • 磁性
    +关注

    关注

    0

    文章

    63

    浏览量

    12971
  • 偏振片
    +关注

    关注

    0

    文章

    5

    浏览量

    2413
收藏 人收藏

    评论

    相关推荐

    利用偏振来改善量子成像

    实验设置和SSN信号检索 量子成像是一个不断发展的领域,它利用光粒子或光子在特殊情况下连接或纠缠的反直觉和“怪异”能力。无论这两个光子相距多远,如果纠缠的两个光子中的一个
    的头像 发表于 04-10 06:40 60次阅读
    利用<b class='flag-5'>偏振</b>来改善<b class='flag-5'>量子</b>成像

    微型量子存储元件的量产之路

    光子特别适合传输量子信息。光子可用于通过光缆向卫星或量子存储元件发送量子信息。但光子
    的头像 发表于 01-22 14:42 202次阅读

    什么是光电量子计算芯片?

    什么是光电量子计算芯片? 光电量子计算芯片,也被称为光子量子计算芯片,是一种新型的计算芯片,利用光子
    的头像 发表于 01-09 14:42 352次阅读

    偏振片和波片实现激光能量衰减的原理

    偏振片和波片实现激光能量衰减的原理 偏振片和波片是激光技术中常用的光学元件,它们可以用来实现激光能量的衰减。我们将详细介绍偏振片和波片的工作原理以及它们在激光衰减中的应用。 偏振片是一
    的头像 发表于 12-20 15:35 577次阅读

    偏振成像的基本原理和特点

    大多数常见的偏振滤波器可分为三种类型:时间分割、振幅分割或焦平面分割(表1)。在时间分割的偏振测量中,随着偏振元件(如液晶、偏振片或光弹性调制器)的旋转或调制,数据是按时间顺序获得的,
    的头像 发表于 12-10 10:39 607次阅读
    <b class='flag-5'>偏振</b>成像的基本原理和特点

    光子量子纠缠实现快速可视化

      加拿大渥太华大学与意大利罗马第一大学的科学家展示了一种新技术,可实时可视化两个纠缠光子(构成光的基本粒子)的波函数。这一成果有望加速量子技术的进步,改进量子态表征、量子
    的头像 发表于 12-01 10:34 180次阅读

    我国量子通信技术现状 量子通信相比经典通信的优点

    量子通信是由量子态携带信息的通信方式,它利用光子等基本粒子的量子纠缠原理实现保密
    发表于 11-07 10:19 848次阅读
    我国<b class='flag-5'>量子</b><b class='flag-5'>通信</b>技术现状 <b class='flag-5'>量子</b><b class='flag-5'>通信</b>相比经典<b class='flag-5'>通信</b>的优点

    偏振光源光路原理 浅谈偏振光源在机器视觉中的应用

    偏振光按其性质可分为平面偏振光(或线偏振光),圆偏振光,椭圆偏振光和部分偏正光。例如,自然光在传播过程中经过某种介质(
    发表于 09-27 10:16 1757次阅读
    <b class='flag-5'>偏振</b>光源光路原理 浅谈<b class='flag-5'>偏振</b>光源在机器视觉中的应用

    浅析新型光子偏振片照亮量子通信之路

    洛斯阿拉莫斯国家实验室(Los Alamos National Laboratory)的研究人员开发了一种技术,可以比现有方法更容易、更便宜地产生偏振光子
    的头像 发表于 09-14 16:39 818次阅读

    手性光子源芯片开创量子态操控和传输的新路径

    光子量子力学的基本粒子之一。对光量子态的有效操控和调制,是量子计算、量子保密通信等应用的基石。
    发表于 08-21 10:15 311次阅读
    手性<b class='flag-5'>光子</b>源芯片开创<b class='flag-5'>量子</b>态操控和传输的新路径

    基于光子晶体谐振器的单光子铒发射源构建量子网络

    据麦姆斯咨询报道,近期,德国研究人员研发出一种新型光子晶体谐振器,他们认为这种谐振器非常适合构建量子网络。
    的头像 发表于 06-26 09:23 435次阅读
    基于<b class='flag-5'>光子</b>晶体谐振器的单<b class='flag-5'>光子</b>铒发射源构建<b class='flag-5'>量子</b>网络

    基于FPGA的量子通信系统偏振态制备及控制集成化研究

    在以偏振编码为基础的量子保密通信中,由于外界温度、应力以及光纤制造缺陷等因素,使得偏振态无法保持长期稳定,增加了系统误码率
    发表于 05-22 15:43 657次阅读
    基于FPGA的<b class='flag-5'>量子</b><b class='flag-5'>通信</b>系统<b class='flag-5'>偏振</b>态制备及控制集成化研究

    量子通信是骗局?#量子力学 #通信

    量子通信
    jf_97106930
    发布于 :2023年05月21日 10:43:14

    如何理解量子保密通信? #量子通信

    量子量子通信
    jf_97106930
    发布于 :2023年05月20日 09:27:02

    量子通信可以超越光速吗 量子通信的优点和缺点

    目前的量子通信实验中,量子通信需要光纤。因为量子态的传输需要通过光子之间的相互作用来实现,光纤可
    发表于 05-09 17:21 7586次阅读