0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何利用高阶模态设计高性能高频PMUT呢?

MEMS 来源:MEMS 2023-09-14 09:24 次阅读

压电式微机械超声换能器(PMUT)已被应用于指纹识别、物体检测医学成像等领域。基于块体型压电陶瓷的传统超声换能器与空气或液体的声耦合较差,并且将其加工成用于3D成像的2D换能器阵列的成本高昂。相反,微机械超声换能器(MUT)的声阻抗低,可以与空气/液体良好耦合。此外,PMUT还具有元件尺寸小、功耗低、成本低以及易于与电子器件集成等优点。

无需昂贵的切割工艺,高频(≥ 10 MHz)PMUT是块体型压电超声换能器阵列的一种有吸引力的替代方案。更高的频率代表更高的空间分辨率,但在介质中的衰减也更高,这将适用于需要在短距离内获得高分辨率的应用,例如指纹识别和内窥镜成像等。以往的PMUT研究主要集中在基本模态,Smith等人给出了多环电极驱动PMUT的格林函数(Green’s function)解析解和等效电路模型,但没有给出高阶模态的最佳电极设计。此外,高阶模态PMUT在发射和往返性能方面的优势尚未被揭示。

据麦姆斯咨询报道,近日,中国科学院上海微系统与信息技术研究所李昕欣研究员、上海科技大学吴涛研究员领导的科研团队在IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control期刊上发表了题为“Design of Piezoelectric Micromachined Ultrasonic Transducers using High-order Mode with High Performance and High Frequency”的论文,提出了基于高阶模态的PMUT设计,建立了分析模型并将其用于评估n阶轴对称模态下PMUT的性能。为了验证这一设计构想,研究人员利用有限元方法(FEM)对三阶PMUT进行了综合分析。分析模型为电极配置和几何尺寸的设计提供了指导,并通过FEM进行了验证。

通过优化的电极配置和厚度,所提出的PMUT设计在传输和往返灵敏度方面的性能得到了显著改善。与相同半径的传统一阶PMUT相比,三阶PMUT的发射灵敏度和往返灵敏度分别提高了约10.2倍和4.12倍。脉冲回波分析表明,与相同半径的一阶PMUT相比,三阶PMUT的接收电压提高了8.6倍。有限元模拟结果表明,本文所提出的高阶模态PMUT设计具有高频、往返灵敏度高、指向性强等特点,在构建高频大规模PMUT阵列中具有广阔的应用前景。

具有单压电晶片结构(包括电极、压电材料和支撑材料的堆叠层)的PMUT器件被近似为具有固支边界的均匀薄板,该薄板的横截面图和俯视图如图1(a)和1(b)所示。

47714eda-524f-11ee-a25d-92fbcf53809c.jpg

图1 多电极驱动的圆板(由固支边界的多层构成)的(a)横截面图和(b)俯视图

在之前的研究中,PMUT的第一轴对称模态(0, 1)被认为具有最大的体积位移和速度,因此可产生尽可能高的声压。然而,第三轴对称模态(0, 3)的谐振频率是模态(0, 1)的10倍以上,由于PMUT的输出声压与ω²成正比,因此产生的声压更高。

为了证明提出的设计构想并验证所提出的高阶PMUT的优越性,考虑到发射和接收灵敏度之间的权衡,研究人员选择模态(0, 3)作为分析的示例。

为了评估所提出的高阶PMUT设计,研究人员在COMSOL Multiphysics中建立了2D轴对称FEM模型。模型采用COMSOL中的默认材料参数。图2(a)-(c)分别显示了用于模拟发射灵敏度、接收灵敏度和脉冲回波响应的COMSOL模型配置。频域中的灵敏度模拟提供了更稳定、更高效的全频带信息和优化指导,而时域中的脉冲回波模拟提供了包括发射和接收过程在内的往返性能,全面评估了总体性能,更接近飞行时间(ToF)应用的实际场景。

47989cba-524f-11ee-a25d-92fbcf53809c.jpg

图2 用于(a)发射灵敏度(b)接收灵敏度和(c)脉冲回波响应的PMUT的2D轴对称FEM模型的配置

图3(a)-(c)显示了针对(0, 1)和(0, 3)模态进行优化的两种PMUT设计的发射灵敏度STx、接收灵敏度SRx和往返灵敏度SRT的频率响应,分别标记为(0, 1)和(0, 3)。

47ab153e-524f-11ee-a25d-92fbcf53809c.jpg

图3 不同PMUT设计在相同半径a = 50 μm下的模拟发射、接收和往返性能

图4显示了当半径a = 50 µm和驱动电压为1 V时,(0, 3)模态PMUT和(0, 1)模态PMUT(作为参考)的声压级(SPL)空间分布。水中的参考声压级为1 µPa。在与水接触时(c0 = 1481 m/s),所演示的(0, 1)和(0, 3)PMUT的f0分别为3.18 MHz和18.60 MHz。

47cfa87c-524f-11ee-a25d-92fbcf53809c.jpg

图4 (0, 3)模态PMUT与传统(0, 1)模态PMUT输出声压级的空间分布和指向性比较

与(0, 1)PMUT相比,提出的(0, 3)PMUT表现出卓越的往返性能。PMUT中心的表面声压(P0)如图5(a)所示。两种PMUT设计由图5(c)所示的电压驱动,该电压是高斯函数和正弦函数的乘积。(0, 3)PMUT产生的表面声压为10.6 kPa,是(0, 1)PMUT(4.96 kPa)的2.15倍。图5(b)显示了经刚性边界反射后返回PMUT表面的回波声压。经刚性边界反射后,(0, 3)PMUT的回波声压(62.0 Pa)是(0, 1)PMUT(5.88 Pa)的10.5倍,这与STx的改善(10.2倍)是一致的。

PMUT的接收电压如图5(d)所示。在接收过程中,(0, 3)PMUT的最大接收电压为6.53 µV,是(0, 1)PMUT(0.76 µV)的8.6倍。由于终端电阻与PMUT电抗不匹配,两种设计的接收电压比高于SRT比(4.12倍)。(0, 1)和(0, 3)PMUT的电容分别为0.368和0.140 pF,对应的电抗分别为136和61 kΩ,导致输出电压比为2.05。因此,两者的最大接收电压比约为4.12 × 2.05 ≈ 8.5。

47e9f70e-524f-11ee-a25d-92fbcf53809c.jpg

图5 具有相同半径的(0, 1)模态与(0, 3)模态PMUT的模拟脉冲回波响应

综上所述,本研究提出了具有高阶轴对称模态的PMUT设计。为了证明这一设计构想,研究人员采用了三阶模态进行分析,而将传统的一阶轴对称模态作为参考。他们建立了n阶轴对称模态的分析模型,并将其用于谐振频率f0、位移灵敏度As、发射灵敏度STx、接收灵敏度SRx、往返灵敏度SRT和指向性的性能分析,为优化高阶PMUT提供指导,并通过FEM模拟进行了验证。通过优化电极配置和层厚度,与传统的(0, 1)PMUT设计相比,所提出的(0, 3)PMUT在发射、往返性能和高指向性方面的性能得到了显著改善。这些特性使得高阶模态PMUT在构建高频大规模阵列方面具有广阔的应用前景。







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 接收机
    +关注

    关注

    8

    文章

    1122

    浏览量

    52646
  • 压电陶瓷
    +关注

    关注

    6

    文章

    183

    浏览量

    33004
  • Fem
    Fem
    +关注

    关注

    4

    文章

    35

    浏览量

    19704
  • COMSOL
    +关注

    关注

    34

    文章

    91

    浏览量

    55415
  • 超声换能器
    +关注

    关注

    0

    文章

    50

    浏览量

    2819

原文标题:利用高阶模态设计高性能高频PMUT

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    高性能实用工具  我爱发明  生活好妙招  #硬声创作季

    DIY高性能
    Hello,World!
    发布于 :2022年09月26日 20:52:22

    #硬声创作季 家里的音箱坏了,便制作了一个高性能的移动音箱

    音箱DIY高性能
    Mr_haohao
    发布于 :2022年10月20日 23:03:23

    模态窗口的设置问题

    Labview中,一个窗口如果设置为模态窗口,则打开后,点击其他窗口应该是没有作用的。我设置的几个子VI为模态窗口,效果都没有问题。但有一个子VI,设置为模态窗口,打开后,点击其他窗口的按钮,虽然
    发表于 11-28 21:56

    LMS Virtual Lab 流固模态分析

    LMS Virtual Lab 流固模态分析的主要步骤:1、设置材料、属性、约束条件,进行结构有限元模态分析。注意:模态计算的频率范围不要太小,否则可能计算错误!2、对流体进行模态分析
    发表于 05-29 06:59

    C波段超高性能微波天线的馈源系统的设计方法介绍

      本文介绍了用于微波接力天线馈源中的C波段超高性能馈源系统的设计方法,利用高频结构仿真软件对其进行了优化设计。对一些重要的和不易调整的尺寸用加偏差的方法来确定加工精度。计算结果与实测结果吻合的较好
    发表于 06-11 07:14

    怎么把电源计划设置为高性能

    高性能?我们一起来看看吧。具体步骤:1、右键点击桌面计算机,在打开的菜单项中选择属性;Win11笔记本电源计划怎么设置?Win11设置电源计划为高性能的方法2、控制面板 - 所有控制面板项 - 系统
    发表于 12-31 08:17

    高性能微波天线馈源系统的设计

    高性能微波天线馈源系统的设计 本文介绍了用于微波接力天线馈源中的C波段超高性能馈源系统的设计方法,利用高频结构仿真软件对其进行了优
    发表于 10-21 17:34 941次阅读
    超<b class='flag-5'>高性能</b>微波天线馈源系统的设计

    MAX5879高性能数模转换器(DAC)

    MAX5879是一种高性能,14位,2.3Gsps数字 - 模拟转换器(DAC),能够合成高频和宽带信号在基带和高阶奈奎斯特频带。
    发表于 08-16 09:50 1974次阅读

    多级无缓存高阶路由器

    随着高性能网络规模的增加,高阶路由器结构设计成为高性能计算研究的重点和热点。使用高阶路由器,网络能实现更低的报文传输延迟、网络功耗和网络构建成本,同时
    发表于 11-22 16:55 15次下载
    多级无缓存<b class='flag-5'>高阶</b>路由器

    利用应变模态差识别弯管内部损伤的研究

    为研究利用应变模态差识别弯管内部损伤的方法,以损伤前、后的应变模态差作为弯管损伤识别的损伤指标对其展开研究。首先,基于位移模态和应变模态
    发表于 04-15 15:25 5次下载
    <b class='flag-5'>利用</b>应变<b class='flag-5'>模态</b>差识别弯管内部损伤的研究

    非工作模态的环形行波超声电机检测研究

    为了硏究非工作模态振型对环形行波超声波电机运行性能的影响,在参考理想环形行波超声波电机接触模型的基础上,将相邻高阶模态振型与工作模态振型相结
    发表于 05-31 10:18 1次下载

    如何利用LLM做多模态任务?

    大型语言模型LLM(Large Language Model)具有很强的通用知识理解以及较强的逻辑推理能力,但其只能处理文本数据。虽然已经发布的GPT4具备图片理解能力,但目前还未开放多模态输入接口并且不会透露任何模型上技术细节。因此,现阶段,如何利用LLM做一些多
    的头像 发表于 05-11 17:09 681次阅读
    如何<b class='flag-5'>利用</b>LLM做多<b class='flag-5'>模态</b>任务?

    基于应变模态振型的可配置PMUT电极设计

    压电式微机械超声换能器(PMUT)已成为传统块体型压电技术的可行替代品,特别是在小型化、低成本、低驱动电压、易于制造和集成到前端电子器件的应用中至关重要。
    发表于 08-08 10:47 195次阅读
    基于应变<b class='flag-5'>模态</b>振型的可配置<b class='flag-5'>PMUT</b>电极设计

    面向医疗应用的ScAlN PMUT的开发设计

    微加工技术的进步推动了高性能电容式微机械超声换能器(CMUT)和压电式微机械超声换能器(PMUT)的发展。
    的头像 发表于 08-09 09:43 888次阅读
    面向医疗应用的ScAlN <b class='flag-5'>PMUT</b>的开发设计

    基于不同的结构参数对PMUT性能的影响

    ,压电式微机械超声换能器(PMUT)具有易与水和空气声阻抗匹配,以及集成度高的特性,引起了学者的广泛关注。PMUT在医疗成像、手势识别、内窥成像和指纹识别等领域有着重要的应用,而灵敏度等性能是影响其成像质量的主要因素。 据麦姆斯
    的头像 发表于 10-09 09:15 402次阅读
    基于不同的结构参数对<b class='flag-5'>PMUT</b><b class='flag-5'>性能</b>的影响