0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

数据湖真的能取代数据仓库吗?【SNP SAP数据转型 】

SNP中国 来源:SNP中国 作者:SNP中国 2023-07-03 15:48 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

数据湖和数据仓库的存在并不冲突,也并不是取代的关系,而是相互的融合关系。

数据湖是近两年中比较新的技术在大数据领域中,对于一个真正的数据湖应该是什么样子,现在对数据湖认知还是处在探索的阶段,像现在代表的开源产品有iceberg、hudi、Delta Lake。

那对于数据湖应该是什么样子,先来看数据湖的作者AWS来说明数据湖是什么东西,比如下图:

wKgZomSifUeACvh7AADb-blUOi4238.jpg

图片来源:谈数据-探秘AWS数据湖

不懂数据的人也许会觉得数据湖很厉害,而懂数据的人也许会觉得仅是一堆数据仓库技术的堆砌包装而已,你看上面那张框架图,哪个专业词汇数据人士会不懂?凭什么数据湖被炒作成了一个新概念?

而对于数据湖的定义则是:

数据湖是一个集中式存储库,允许您以任意规模存储所有结构化和非结构化数据。您可以按原样存储数据(无需先对数据进行结构化处理),并运行不同类型的分析 – 从控制面板和可视化到大数据处理、实时分析和机器学习,以指导做出更好的决策。

那么数据湖和我们早先的数据仓库究竟有什么样的区别呢:

数据仓库是一个优化的数据库,用于分析来自事务系统和业务线应用程序的关系数据。事先定义数据结构和 Schema 以优化快速 SQL 查询,其中结果通常用于操作报告和分析。数据经过了清理、丰富和转换,因此可以充当用户可信任的“单一信息源”。

数据湖有所不同,因为它存储来自业务线应用程序的关系数据,以及来自移动应用程序、IoT 设备和社交媒体的非关系数据。捕获数据时,未定义数据结构或 Schema。这意味着您可以存储所有数据,而不需要精心设计也无需知道将来您可能需要哪些问题的答案。您可以对数据使用不同类型的分析(如 SQL 查询、大数据分析、全文搜索、实时分析和机器学习)来获得见解。

wKgaomSifUiAOQh_AADN-mbIIbo634.jpg

从介绍来看好像数据仓库和数据湖的最主要的区别就是对结构化的数据和非结构化数据的存储,但是真的仅仅是这样吗?

事实上,这种比较有较大逻辑漏洞:即是从结果出发来看差异,然后又用这个差异来说明区别,颠倒了因果。比如AWS的数据湖能够处理非结构化数据,而数据仓库无法处理非结构化数据,就认为这是数据湖与数据仓库的本质区别之一。

下面的文章中将来探索数据湖和数据仓库究竟有什么样的区别,学习一个新的事物要一步步的发现这个事物的本质是什么。

wKgaomSj2F6ADwVzAAHa-EwlwXA619.png

数据仓库和数据湖的处理流程可以用下图来示意,其中用红圈标出了5个对标的流程节点。

wKgaomSifUmAfc37AACxOXOKjcs002.jpg

从图中可以看出来数据湖并不比数据仓库在处理流程上多出了什么内容,更多的在于结构性的变化,下面就从数据存储、模型设计、加工工具、开发人员和消费人员五个方面来进行比较。

数据存储

数据仓库采集、处理过程中存储下来的数据一般是以结构化的形式存在的,即使原始数据是非结构化的,但这些非结构化数据也只是在源头暂存一下,它通过结构化数据的形式进入数据仓库,成了数据仓库的基本存储格式,这个跟数据仓库的模型(维度或关系建模)都是建立在关系型数据基础上的特点有关。

事实上,是传统的数据建模负担让数据仓库只处理结构化数据,其实谁都没规定过数据仓库只处理和存储结构化数据。

数据湖包罗万象,轻装上阵,结构化与非结构化数据都成为了数据湖本身的一部分,这体现了数据湖中“湖”这个概念。因为没有数据仓库建模的限制,当然什么东西都可以往里面扔,但这为其变成数据沼泽埋下了伏笔。

模型设计

数据仓库中所有的Schema(比如表结构)都是预先设计并生成好的,数据仓库建设最重要的工作就是建模,其通过封装好的、稳定的模型对外提供有限的、标准化的数据服务,模型能否设计的高内聚、松耦合成了评估数据仓库好坏的一个标准,就好比数据中台非常强调数据服务的复用性一样。

你会发现,数据仓库很像数据领域的计划经济,所有的产品(模型)都是预先生成好的,模型可以变更,但相当缓慢。

数据湖的模型不是预先生成的,而是随着每个应用的需要即时设计生成的,其更像是市场经济的产物,牺牲了复用性却带来了灵活性,这也是为什么数据湖的应用更多强调探索分析的原因。

加工工具

数据仓库的采集、处理工具一般是比较封闭的,很多采取代码的方式暴力实现,大多只向集中的专业开发人员开放,主要的目的是实现数据的统一采集和建模,它不为消费者(应用方)服务,也没这个必要。

数据湖的采集和处理工具是完全开放的,因为第(2)点提到过:数据湖的模型是由应用即席设计生成的,意味着应用必须具备针对数据湖数据的直接ETL能力和加工能力才能完成定制化模型的建设,否则就没有落地的可能,更无灵活性可言。

工具能否开放、体验是否足够好是数据湖能够成功的一个前提,显然传统数据仓库的一些采集和开发工具是不行的,它们往往不可能向普通大众开放。

开发人员

数据仓库集中开发人员处理数据涵盖了数据采集、存储、加工等各个阶段,其不仅要管理数据流,也要打造工具流。

由于数据流最终要为应用服务,因此其特别关注数据模型的质量,而工具流只要具备基本的功能、满足性能要求就可以了,反正是数据仓库团队人员自己用,导致的后果是害苦了运营人员。

数据湖完全不一样,集中开发人员在数据流阶段只负责把原始数据扔到数据湖,更多的精力花在对工具流的改造上,因为这些工具是直接面向最终使用者的,假如不好用,数据湖就不能用了。

应用人员

数据仓库对于应用人员暴露的所有东西就是建好的数据模型,应用方的所有角色只能在数据仓库限定好的数据模型范围内倒腾,这在一定程度上限制了应用方的创新能力。比如原始数据有个字段很有价值,但数据仓库集中开发人员却把它过滤了。

这种问题在数据仓库中很常见,很多取数人员只会取宽表,对于源端数据完全不清楚,所谓成也数据仓库,败也数据仓库。

数据湖的应用方则可以利用数据湖提供的工具流接触到最生鲜的原始数据,涵盖了从数据采集、抽取、存储、加工的各个阶段,其可以基于对业务的理解,压榨出原始数据的最大价值。

可以看到,数据仓库和数据湖,代表着两种数据处理模式和服务模式,是数据技术领域的一次轮回。

早在ORACLE的DBLINK时代,我们就有了第一代的数据湖,因为那个时候ORACLE一统天下,ORALCE的DBLINK让直接探索原始数据有了可能。

随着数据量的增长和数据类型的不断丰富,我们不得不搞出一种新的“数据库”来集成各种数据。

但那个时候搞出的为什么是数据仓库而不是数据湖呢?

主要还是应用驱动力的问题。

因为那个时候大家关注的是报表,而报表最核心的要求就是准确性和一致性,标准化、规范化的维度和关系建模正好适应了这一点,集中化的数据仓库支撑模式就是一种变相的计划经济。

随着大数据时代到来和数字化的发展,很多企业发现,原始数据的非结构化比例越来越高,前端应用响应的要求越来越高,海量数据挖掘的要求越来越对,报表取数已经满足不了数据驱动业务的要求了。

wKgZomSifUqAe3fzAAU2Bj8UX0w931.jpg

一方面企业需要深挖各种数据,从展示数据为主(报表)逐步向挖掘数据(探索预测)转变,另一方面企业也需要从按部就班的支撑模式向快速灵活的方向转变,要求数据仓库能够开放更多的灵活性给应用方,这个时候数据仓库就有点撑不住了。

数据湖就是在这种背景下诞生的。

其实早在数据湖出来之前,很多企业就在做类似数据湖的工作了,但是只不过大家更多的集中在数据仓库结构化的数据处理中,对于非结构化的数据日志等更多的则是将其存储起来,对于需要的时候再通过应用程序进行处理获取到自己想要的结果,只不过是没有系统化的处理而已。

ETL之所以不开放,主要是驱动力不够,其实我们没有那么多类型的数据要定制化抽取。

很多企业不搞可视化开发平台也是容易理解的,报表就能活得很好,干嘛业务人员要自己开发和挖掘。现在数据湖叫的欢的,大多是互联网公司,比如亚马逊,这是很正常的。

而最近比较新的概念湖仓一体,阿里提出的概念,下面这张图来看一下

wKgZomSifUuAQn_6AAB89u2t8wA124.jpg

何谓湖仓一体?

湖仓一体是一种新的数据管理模式,将数据仓库和数据湖两者之间的差异进行融合,并将数据仓库构建在数据湖上,从而有效简化了企业数据的基础架构,提升数据存储弹性和质量的同时还能降低成本,减小数据冗余。

湖和仓的数据/元数据无缝打通,互相补充,数据仓库的模型反哺到数据湖(成为原始数据一部分),湖的结构化应用知识沉淀到数据仓库。

湖仓一体架构主要的一点是实现“湖里”和“仓里”的数据能够无缝打通,对数据仓库的弹性和数据湖的灵活性进行有效集成,在该架构中,主要将数据湖作为中央存储库,将机器学习、数据仓库、日志分析、大数据等技术进行整合,形成一套数据服务环,更好地分析、整合数据,让数据仓库和数据湖中的数据可以自由流动,用户可以更便捷地调取其中的数据,让数据“入湖”、“出湖”更为便捷。

湖仓一体化,是将数据仓库和数据湖的价值进行叠加,克服数据重力,让数据在服务之间流动起来,减少重复建设,让湖中的数据可以”流到“数据仓中,并能直接进行数据调用;而数据仓中的数据也可以保存于数据湖中,供未来数据挖掘使用。借助湖仓一体化,可快速处理数仓内的热数据与数据湖中的历史数据,并生成丰富的数据集,但无需在执行中做任何数据移动操作。

那数据湖究竟应该是什么样子,需要在接下来的发展中获取到答案,但是以目前来看,典型的组织都需要数据仓库和数据湖,因为它们可满足不同的需求和使用诉求。所以数据湖和数据仓库的存在并不冲突,也并不是取代的关系,而是相互的融合关系。


如何将ERP数据集成到数据仓库、数据湖?

现在大家了解了数据湖与数据仓库的区别,以及湖仓一体新的数据管理模式。那么如何将ERP系统数据实时并大批量地导出至数据湖、数据仓库进行商业分析?SNP Glue软件应运而生,它旨在通过实施先进的SAP数据集成,将客户的数据平台提升到一个新的水平。

Glue允许您将SAP数据如ERP(ECC 、S4/HANA)、BW、CRM/SCM、客户ABAP应用程序、HANA数据等引入数据仓库,帮助您实现实时复制提取SAP数据并放入您所期待的目标环境,无论是数据库、数据湖、BI数据分析工具、或云解决方案。支持用例,将数据流实时传输到数据湖中以提供数据产品或支持基于事件的客户应用程序。SNP Glue避免了供应商锁定的风险。通过SAP、Google、Amazon、Microsoft、Snowflake和Cloudera认证

如想查看Glue如何将数据集成到数据平台的Demo演示可以联系SNP公司

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • SAP
    SAP
    +关注

    关注

    1

    文章

    454

    浏览量

    22639
  • 数据管理
    +关注

    关注

    1

    文章

    333

    浏览量

    20477
  • 数据仓库
    +关注

    关注

    0

    文章

    63

    浏览量

    10912
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    Next Pathway成为Snowflake最高级别合作伙伴

    的持续投入。 Next Pathway始终展现出卓越的专业能力,以无可匹敌的效率帮助全球客户将复杂的数据仓库数据迁移至Snowflake AI数据云平台。“精英级”地位特别认可
    的头像 发表于 12-04 18:08 883次阅读
    Next Pathway成为Snowflake最高级别合作伙伴

    部署Denodo与数据仓架构联用,用户可获得345%投资回报率(ROI),实现3–4倍数据洞察提速

    仓投资价值最大化 Veqtor8 对比了企业在仅使用现代数据仓(如 Snowflake、Databricks)与在其基础上部署 Denodo 平台 的投资回报
    的头像 发表于 10-23 17:27 446次阅读

    SAP 数据脱敏工具:SNP TDO如何满足新颁敏感信息政策要求

    面对我国新颁《数据安全法》《个保法》敏感信息政策,本篇文章将详细解答企业数据合规三大刚需:国家机密防护、商业数据保护、个人隐私脱敏。
    的头像 发表于 08-19 09:49 289次阅读

    微软推出全新Microsoft Sentinel数据国际版

    近期,MicrosoftSentinel数据(国际版)正式开放公开预览,重塑安全运营架构。它通过统一所有安全数据,以远低于传统方案的成本,解决了海量数据管理和可见性不足的痛点。这一新
    的头像 发表于 08-04 15:36 757次阅读

    泰国零售巨头 CJ Express 借助 SAP 内存数据库实现高效数据管理

    泰国零售和食品分销商 CJ Express 借助 SAP 内存数据库及 Datavard 解决方案,有效控制数据增长,提升系统性能并降低成本的成功案例。
    的头像 发表于 06-13 11:04 442次阅读
    泰国零售巨头 CJ Express 借助 <b class='flag-5'>SAP</b> 内存<b class='flag-5'>数据</b>库实现高效<b class='flag-5'>数据</b>管理

    DXC携手SAP与Microsoft,简化并加速企业转型

    ,实现现代化转型 弗吉尼亚州阿什伯恩 2025年5月9日 /美通社/ -- 财富500强企业、全球领先的技术服务供应商DXC Technology(NYSE:DXC)携手SAP与Microsoft,推出
    的头像 发表于 05-09 15:04 499次阅读
    DXC携手<b class='flag-5'>SAP</b>与Microsoft,简化并加速企业<b class='flag-5'>转型</b>

    SNPSAP携手走进中联重科|破局不确定性,锻造新竞争力

    2025年SAP走进中联重科活动圆满落幕!130+装备制造企业代表与SAPSNP专家共探数字化创新:聚焦SAP Business Suite全业务链覆盖、商业AI深度融入、
    的头像 发表于 05-08 10:29 591次阅读
    <b class='flag-5'>SNP</b>与<b class='flag-5'>SAP</b>携手走进中联重科|破局不确定性,锻造新竞争力

    华为发布AI数据解决方案加速行业智能化 AI时代数据觉醒

    正式发布AI数据解决方案,加速AI行业化落地。 华为公司副总裁、华为数据存储产品线总裁周跃峰博士 数字化转型已经进行了几十年,很多事发生了变化,只有一样事情从来没有变化过,那就是“
    的头像 发表于 04-30 18:01 1463次阅读
    华为发布AI<b class='flag-5'>数据</b><b class='flag-5'>湖</b>解决方案加速行业智能化 AI时<b class='flag-5'>代数据</b>觉醒

    IBM如何基于SAP平台和数据推动生成式AI的成功应用

    “近日,IBM 商业价值研究院(IBV)与 SAP 研究洞察中心联合开展了一项大规模调研,覆盖全球 1200余位全球企业高管,其中 200位来自大中华区,以深入洞察组织如何基于 SAP 平台和数据推动生成式 AI 的成功应用。
    的头像 发表于 04-17 10:20 825次阅读

    华为加速AI时代数据存储产业发展

    近日,在华为中国合作伙伴大会2025上,华为数据存储产品线总裁周跃峰发表“共筑数智解决方案,共享数据存储产业大发展”主题演讲,深入探讨如何加速AI行业化落地,并分享AI时代数据存储产业的新趋势新机遇。
    的头像 发表于 04-01 15:35 909次阅读

    注塑机数据采集网关和数据中台有哪些联系特点

    。它将这些分散的、来自不同注塑机的数据进行收集和整理,为数据中台提供原始数据来源。 数据中台实现集中存储:数据采集网关通过网络将采集到的
    的头像 发表于 03-25 15:38 510次阅读
    注塑机<b class='flag-5'>数据</b>采集网关和<b class='flag-5'>数据</b>中台有哪些联系特点

    SNP亮相 “SAP Business Unleashed 创新日”

    数据和企业应用前所未有地结合,打造面向未来的下一代企业管理 ,释放无限潜力!德勤、SNP、毕博、AWS等伙伴受邀参加本次峰会并发表演讲。
    的头像 发表于 03-20 23:23 645次阅读
    <b class='flag-5'>SNP</b>亮相 “<b class='flag-5'>SAP</b> Business Unleashed 创新日”

    企业并购中SAP系统的三大数据转型挑战以及来如何应对?

    SNP探讨并购中数据挑战:系统不匹配、停机时间长、数据量大。提出解决方案:调整系统一致性、最小化停机时间、管理数据量。通过CrystalBridge®和OutboardERP实现成功案
    的头像 发表于 02-27 17:02 552次阅读

    戴尔数据仓助力企业数字化转型

    在数字化转型的浪潮下,企业正面临着前所未有的数据挑战。从传统的结构化数据到如今的非结构化数据、半结构化数据,每一种类型都对企业的存储和分析能
    的头像 发表于 12-20 09:31 773次阅读

    可与MES系统集成的数据采集监控平台

    ,确保数据的全面接入。 数据存储与管理: 采用数据库或数据仓库存储采集到的数据。 提供高效的数据
    发表于 12-16 15:08