0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

开放NAND闪存接口ONFI介绍

嵌入式USB开发 来源:嵌入式Lee 作者:嵌入式Lee 2023-06-21 17:36 次阅读

本文转自公众号,欢迎关注

开放NAND闪存接口ONFI介绍 (qq.com)

一.前言

ONFI即 Open NAND Flash Interface,开放NAND闪存接口.是一个由100多家制造、设计或启用NAND闪存的公司组成的行业工作组,主要是Intel和镁光。致力于简化NAND闪存集成到消费电子产品、计算平台和任何其他需要固态大容量存储的应用程序中。为NAND闪存定义标准化的组件级接口规范以及连接器和模块外形规格。使用开放接口标准加强了来自不同供应商的NAND设备的兼容性和互操作性。这增加了标准器件的供应基础,缩短了设计时间并加快了上市时间。

从软件的角度,主要是读取符合ONFI标准的参数,比如容量等信息,用以做驱动代码的兼容性设计。这部分信息一般放置在指定的参数PAGE中,描述芯片组织、功能、时序和其他行为参数的数据结构。

以下基于GD5F1GQ5xExxG详细介绍ONFI的参数页。

二.读取参数页

参考《GD5F1GQ5xExxG DATASHEET》的8.11 Read Parameter Page (P27)

参数PAGE至少有三份参数副本存储在设备中,读PAGE到Cache(13h) 之后,从Cache读(03H/0BH)命令可用于读指定的数据,可以一次只读一份,如果校验错误再偏移读下一份。

操作过程如下:

1.配置B0寄存器的OTP_EN位为1

2.然后回读确认B0寄存器的OTP_EN位置1

3.使用(13h)指令加载地址24’h000004的PAGE到Cache中

4.读C0寄存器,等待OIP为0表示操作完

5.使用(03H/0BH)命令从Cache中读出指定数据。

8cee9a6e-0fcc-11ee-9c1d-dac502259ad0.png

如下是使用逻辑分析仪抓取的一次完整的操作

8cf992ca-0fcc-11ee-9c1d-dac502259ad0.png

(1)先读B0寄存器,设置OTP_EN位为1(bit6), 然后回读确认OTP_EN置位

8d048cca-0fcc-11ee-9c1d-dac502259ad0.png

(2)使用(13h)指令加载地址24’h000004的PAGE到Cache中,第一次读C0寄存器为0x01即OIP=1还未完成,然后后面继续读OIP变为了0表示完成。

(3)03H指令读取整个PAGE的数据,可以看到256字节就重复了。

可以看到256字节重复了8遍,刚好2KB,最后还有128B的Spare区域

8d1a29a4-0fcc-11ee-9c1d-dac502259ad0.png

三.参数页数据结构

Byte

O/M

Description

3.3V/1.8V

实际值(数据小端模式)

0-3

M

Parameter page signature
Byte 0: 4FH, “O”
Byte 1: 4EH, “N”
Byte 2: 46H, “F”
Byte 3: 49H, “I”

4FH
4EH
46H
49H

“ONFI”

4-5

M

Revision number
0-15 Reserved (0)

00H
00H

6-7

M

Features supported
0-15 Reserved (0)

00H
00H

8-9

M

Reserved (0)

00H
00H

10-31

Reserved (0)

00H

00H

Manufacturer Information block

32-43

M

Device manufacturer (12 ASCII characters)“GIGADEVICE ”

47H
49H
47H
41H
44H
45H
56H
49H
43H
45H
20H
20H

“GIGADEVICE ”

44-63

M

Device model (20 ASCII characters)

“GD5F1GQ5U”x4 2.7v ~ 3.6v

“GD5F1GQ5R”x4 1.7v ~ 2.0v

47H
44H
35H
46H
31H
47H
51H
35H
55H/52H
20H
20H
20H
20H
20H
20H

20H

20H

20H

20H

20H

“GD5F1GQ5R”

64

M

JEDEC manufacturer ID“C8”

C8H

C8

65-66

O

Date code

00H
00H

67-79

Reserved

00H
00H
00H

Memory organization block

80-83

M

Number of data bytes per page

00H
08H
00H
00H

PAGE数据大小

0x00000800=2KB

84-85

M

Number of spare bytes per page

80H

PAGE的SPARE区域大小0x0080=128字节

86-89

M

Number of data bytes per partial page

00H
02H
00H
00H

分页大小0x0200=512字节

即一个PAGE分为4个小页

90-91

M

Number of spare bytes per partial page

20H
00H

每个分页SPARE区域大小0x0020=32字节

92-95

M

Number of pages per block

40H
00H
00H
00H

每个块的PAGE数0x00000040=64块

96-99

M

Number of blocks per logical unit (LUN)

00H
04H
00H
00H

每个逻辑单元的块数0x00000400=1024个

100

M

Number of logical units (LUNs)

01H

逻辑单元数1

101

M

Reserved

00H

102

M

Number of bits per cell

01H

每个存储单元的位数1,即SLC

103-104

M

Bad blocks maximum

14H
00H

最大坏块数20

105-106

M

Block endurance

01H
05H

耐久性0x0501 (指的什么待查)

107

M

Guaranteed valid blocks at beginning of target

01H

保证存储开始的该块数在生命周期是有效的

108-109

M

Block endurance for guaranteed valid blocks

00H
00H

保证有效区块的耐久性

110

M

Number of programs per page

04H

每页有4个可编程小页

111

M

Partial programming attributes
5-7 Reserved
4 1 = partial page layout is partial page data followed by partial page spare
1-3 Reserved
0 1 = partial page programming has constraints

00H

部分页面编程无约束

小页连续放一起,SPARE区域连续放一起。

112

M

Number of bits ECC correctability

00H

113

M

Number of interleaved address bits
4-7 Reserved (0)
0-3 Number of interleaved address bits

00H

114

O

Interleaved operation attributes
4-7 Reserved (0)
3 Address restrictions for program cache
2 1 = program cache supported
1 1 = no block address restrictions
0 Overlapped / concurrent interleaving support

00H

115-127

Reserved

00H

00H

Electrical parameters block

128

M

I/O capacitance

08H

129-130

M

IO clock support

00H
00H

131-132

O

Reserved (0)

00H
00H

133-134

M

tPROG Maximum page program time (us)

58H
02H

135-136

M

tBERS Maximum block erase time (us)

10H
27H

137-138

M

tR Maximum page read time (us)

3CH
00H

139-140

M

Reserved

00H
00H

141-163

Reserved

00H

Vendor block

164-165

M

Vendor specific Revision number

00H

166-253

Vendor specific

00H

254-255

M

Integrity CRC

Set on test

0x3E80

Redundant parameter pages

256-511

M

Value of bytes 0-255

512-767

M

Value of bytes 0-255

768+

O

Additional redundant parameter pages

校验值如下

Device Model

ORGANIZATION

VCC RANGE

CRC value B254/B255

“GD5F1GQ5UxxG”

X4

2.7v ~ 3.6v

58H/F3H

“GD5F1GQ5RxxG”

X4

1.7v ~ 2.0v

80H/3EH

其中1.“O”代表可选,“M”代表强制

完整性CRC(循环冗余检查)字段用于验证参数页面的内容是否已正确传输到主机。有关详细信息,请参阅ONFI 1.0规范。CRC应使用以下16位生成器多项式计算:G(X)=X^16+X^15+X^2+1,此十六进制多项式可表示为8005h

CRC值应在计算开始前用4F4Eh的值进行初始化。在计算出最终CRC值之后,没有对其应用XOR。不存在数据字节或CRC计算值的反转。

四.关键代码

读参数页的主要流程,相关底层接口这里不再贴出

int nand_read_param_page(uint8_t* buffer, uint16_t start, uint16_t len)
{
    int res = 0;
    /*  设置OTP_EN =  1 */ 
    res = nand_set_otp(NAND_B_OPT_ACCESS,NAND_REG_RETRY);
    if(res == 0)
    {
        /* 加载数据到Cache */
        res = nand_read_page_to_cache(NAND_PARAM_PAGE_ADDR,NAND_PAGE_TO_CACHE_RETRY);
        if(res == 0)
        {
            /* 从Cache读数据 */
            res = nand_read_from_cache(start,  len, buffer);
            if(res == 0)
            {
                /* 成功 */
            }
            else
            {
                res = -3;
            }
        }
        else
        {
            return -2;
        }
    }
    else
    {
        res = -1;
    }
    /* 切回正常模式 */
    nand_set_otp(NAND_B_OPT_NORMAL,NAND_REG_RETRY);
    return res;
}

五.uCFS的NAND FTL中使用ONFI

fs_dev_nand_part_onfi.c

fs_dev_nand_part_onfi.h

函数FS_NAND_PartONFI_ParamPageParse根据参数页解释参数到FS_NAND_PART_DATA结构体

/*
*********************************************************************************************************
*                                   FS_NAND_PartONFI_ParamPageParse()
*
* Description : Parse the ONFI parameter page.
*
* Argument(s) : p_part_data     Pointer to a NAND part data object.
*               -----------     Argument validated by caller.
*
*               p_err           Pointer to variable that will receive return the error code from this function :
*               -----           Argument validated by caller.
*
*                                   FS_ERR_DEV_NAND_ONFI_INVALID_PARAM_PAGE     Invalid parameter page.
*                                   FS_ERR_DEV_NAND_ONFI_VER_NOT_SUPPORTED      ONFI version not supported.
*                                   FS_ERR_NONE                                 Parameter page parsed successfully.
*
* Return(s)   : none.
*
* Note(s)     : none.
*********************************************************************************************************
*/

static  void  FS_NAND_PartONFI_ParamPageParse (FS_NAND_PART_DATA  *p_part_data,
                                               FS_ERR             *p_err)
{
    CPU_BOOLEAN  is_ver_supported;
    CPU_BOOLEAN  has_ext_pp;
    CPU_BOOLEAN  is_bus_16;
    CPU_BOOLEAN  is_invalid;
    CPU_INT08U   value;
    CPU_INT08U   multiplier;
    CPU_INT08U   lun_nbr;
    CPU_INT16U   version;
    CPU_INT32U   pg_size;
    CPU_INT32U   max_size;
    CPU_INT32U   nb_pg_per_blk;
    CPU_INT32U   blk_cnt;
    CPU_INT64U   max_blk_erase;
    CPU_DATA     ix;

   *p_err = FS_ERR_NONE;
                                                                /* -------------- REV INFO AND FEATURES --------------- */
                                                                /* Validate ONFI version.                               */
    MEM_VAL_COPY_GET_INT16U_LITTLE(&version, &FS_NAND_PartONFI_ParamPg[4]);

    is_invalid = DEF_BIT_IS_SET(version, DEF_BIT_00);
    if (is_invalid == DEF_YES) {
       *p_err = FS_ERR_DEV_INVALID;
        return;
    }

    ix = 0;
    is_ver_supported = DEF_NO;
    while ((is_ver_supported != DEF_YES) &&
           (ix < FS_NAND_PART_ONFI_V_QTY)){
        is_ver_supported = DEF_BIT_IS_SET(version, FS_NAND_PartONFI_SupportedVersions[ix]);
        ix++;
    }

    if (is_ver_supported == DEF_YES) {
        version = FS_NAND_PartONFI_SupportedVersions[ix - 1u];
    } else {
        FS_TRACE_DBG(("FS_NAND_PartONFI_ParamPageParse(): ONFI version not supported by this driver.rn"));
       *p_err = FS_ERR_DEV_INVALID;
        return;
    }

                                                                /* Identify features.                                   */
    has_ext_pp = DEF_BIT_IS_SET(FS_NAND_PartONFI_ParamPg[6], FS_NAND_PART_ONFI_FEATURE_EX_PP);

    is_bus_16  = DEF_BIT_IS_SET(FS_NAND_PartONFI_ParamPg[6], FS_NAND_PART_ONFI_FEATURE_BUS_16);
    if (is_bus_16 == DEF_YES) {
        p_part_data-  >BusWidth = 16u;
    } else {
        p_part_data->BusWidth =  8u;
    }

                                                                /* Extended parameter page length.                      */
    if (has_ext_pp == DEF_YES) {
        FS_NAND_PartONFI_ExtParamPageLen  = FS_NAND_PartONFI_ParamPg[12];
        FS_NAND_PartONFI_ExtParamPageLen |= (CPU_INT16U)((CPU_INT16U)FS_NAND_PartONFI_ParamPg[13] <  < DEF_INT_08_NBR_BITS);
        FS_NAND_PartONFI_ExtParamPageLen *= 16u;
    }

                                                                /* Number of parameter pages.                           */
    if (version >= FS_NAND_PART_ONFI_V21) {
        FS_NAND_PartONFI_ParamPageCnt = FS_NAND_PartONFI_ParamPg[14];
    } else {
        FS_NAND_PartONFI_ParamPageCnt = 3u;
    }

                                                                /* ----------- IDENTIFY MEMORY ORGANIZATION ----------- */
                                                                /* Page size.                                           */
    MEM_VAL_COPY_GET_INT32U_LITTLE(&pg_size, &FS_NAND_PartONFI_ParamPg[80]);
    max_size = (FS_NAND_PG_SIZE) -1;
    if (pg_size > max_size) {
        FS_TRACE_DBG(("FS_NAND_PartONFI_ParamPageParse(): Page size does not fit in container type FS_NAND_PG_SIZE.rn"));
       *p_err = FS_ERR_DEV_INCOMPATIBLE_LOW_PARAMS;
        return;
    }
    p_part_data->PgSize = pg_size;

                                                                /* Spare size.                                          */
    MEM_VAL_COPY_GET_INT16U_LITTLE(&(p_part_data->SpareSize), &FS_NAND_PartONFI_ParamPg[84]);

                                                                /* Nb of pages per blk.                                 */
    MEM_VAL_COPY_GET_INT32U_LITTLE(&nb_pg_per_blk, &FS_NAND_PartONFI_ParamPg[92]);
    max_size  = (FS_NAND_PG_PER_BLK_QTY) -1;
    if (nb_pg_per_blk > max_size) {
        FS_TRACE_DBG(("FS_NAND_PartONFI_ParamPageParse(): Nb of pages per blk does not fit in container type FS_NAND_PG_PER_BLK_QTY.rn"));
       *p_err = FS_ERR_DEV_INCOMPATIBLE_LOW_PARAMS;
        return;
    }
    p_part_data->PgPerBlk = nb_pg_per_blk;

                                                                /* Nb of block per logical unit.                        */
    MEM_VAL_COPY_GET_INT32U_LITTLE(&blk_cnt, &FS_NAND_PartONFI_ParamPg[96]);
    max_size = (FS_NAND_BLK_QTY) - 1;
    if (blk_cnt > max_size) {
        FS_TRACE_DBG(("FS_NAND_PartONFI_ParamPageParse(): Blk cnt does not fit in container type FS_NAND_BLK_QTY.rn"));
       *p_err = FS_ERR_DEV_INCOMPATIBLE_LOW_PARAMS;
        return;
    }
                                                                /* Nb of logical units.                                 */
    lun_nbr = FS_NAND_PartONFI_ParamPg[100];

    p_part_data->BlkCnt = blk_cnt * lun_nbr;

                                                                /* Max nb of bad blocks per logical unit.               */
    MEM_VAL_COPY_GET_INT16U_LITTLE(&(p_part_data->MaxBadBlkCnt), &FS_NAND_PartONFI_ParamPg[103]);
    p_part_data->MaxBadBlkCnt *= lun_nbr;

                                                                /* Max programming operations per block.                */
    value          = FS_NAND_PartONFI_ParamPg[105];
    multiplier     = FS_NAND_PartONFI_ParamPg[106];
    if (multiplier > 9u) {
        FS_TRACE_DBG(("FS_NAND_PartONFI_ParamPageParse: Max blk erase count larger than supported.rn"));
       *p_err = FS_ERR_DEV_INCOMPATIBLE_LOW_PARAMS;
        return;
    }
    max_blk_erase     = value * FS_NAND_PartONFI_PowerOf10[multiplier];
    max_size          = (CPU_INT32U) - 1;
    if (max_blk_erase > max_size) {
        FS_TRACE_DBG(("FS_NAND_PartONFI_ParamPageParse(): Max blk erase cnt does not fit in container type CPU_INT32U.rn"));
       *p_err = FS_ERR_DEV_INCOMPATIBLE_LOW_PARAMS;
        return;
    }
    p_part_data->MaxBlkErase = max_blk_erase;

                                                                /* Max nb of partial page programming.                  */
    p_part_data->NbrPgmPerPg = FS_NAND_PartONFI_ParamPg[110];

                                                                /* ECC correction needed.                               */
    p_part_data->ECC_NbrCorrBits = FS_NAND_PartONFI_ParamPg[112];
    if (p_part_data->ECC_NbrCorrBits == 0xFFu) {

        p_part_data->ECC_CodewordSize = 0u;
        if (has_ext_pp == DEF_FALSE) {
            FS_TRACE_DBG(("FS_NAND_PartONFI_ParamPageParse(): ECC located in extended param pg, but dev does not have one.rn"));
           *p_err = FS_ERR_DEV_INVALID;
            return;
        } else {
           *p_err = FS_ERR_DEV_NAND_ONFI_EXT_PARAM_PAGE;
        }

    } else {
        p_part_data->ECC_CodewordSize = 528u;
    }

                                                                /* Factory defect mark type.                            */
    if (version >= FS_NAND_PART_ONFI_V21) {
        p_part_data->DefectMarkType = DEFECT_SPARE_L_1_PG_1_OR_N_ALL_0;
    } else {
                                                                /* #### NAND drv not compatible with 'any loc'.         */
        p_part_data->DefectMarkType = DEFECT_SPARE_L_1_PG_1_OR_N_ALL_0;
    }
}

六.参考

https://www.onfi.org/specifications

最新版本是5.1

8d260d64-0fcc-11ee-9c1d-dac502259ad0.png

补充其中的CRC算法

static uint16_t const crc16_table[256] = {
0x0000, 0x8005, 0x800F, 0x000A, 0x801B, 0x001E, 0x0014, 0x8011,
0x8033, 0x0036, 0x003C, 0x8039, 0x0028, 0x802D, 0x8027, 0x0022,
0x8063, 0x0066, 0x006C, 0x8069, 0x0078, 0x807D, 0x8077, 0x0072,
0x0050, 0x8055, 0x805F, 0x005A, 0x804B, 0x004E, 0x0044, 0x8041,
0x80C3, 0x00C6, 0x00CC, 0x80C9, 0x00D8, 0x80DD, 0x80D7, 0x00D2,
0x00F0, 0x80F5, 0x80FF, 0x00FA, 0x80EB, 0x00EE, 0x00E4, 0x80E1,
0x00A0, 0x80A5, 0x80AF, 0x00AA, 0x80BB, 0x00BE, 0x00B4, 0x80B1,
0x8093, 0x0096, 0x009C, 0x8099, 0x0088, 0x808D, 0x8087, 0x0082,
0x8183, 0x0186, 0x018C, 0x8189, 0x0198, 0x819D, 0x8197, 0x0192,
0x01B0, 0x81B5, 0x81BF, 0x01BA, 0x81AB, 0x01AE, 0x01A4, 0x81A1,
0x01E0, 0x81E5, 0x81EF, 0x01EA, 0x81FB, 0x01FE, 0x01F4, 0x81F1,
0x81D3, 0x01D6, 0x01DC, 0x81D9, 0x01C8, 0x81CD, 0x81C7, 0x01C2,
0x0140, 0x8145, 0x814F, 0x014A, 0x815B, 0x015E, 0x0154, 0x8151,
0x8173, 0x0176, 0x017C, 0x8179, 0x0168, 0x816D, 0x8167, 0x0162,
0x8123, 0x0126, 0x012C, 0x8129, 0x0138, 0x813D, 0x8137, 0x0132,
0x0110, 0x8115, 0x811F, 0x011A, 0x810B, 0x010E, 0x0104, 0x8101,
0x8303, 0x0306, 0x030C, 0x8309, 0x0318, 0x831D, 0x8317, 0x0312,
0x0330, 0x8335, 0x833F, 0x033A, 0x832B, 0x032E, 0x0324, 0x8321,
0x0360, 0x8365, 0x836F, 0x036A, 0x837B, 0x037E, 0x0374, 0x8371,
0x8353, 0x0356, 0x035C, 0x8359, 0x0348, 0x834D, 0x8347, 0x0342,
0x03C0, 0x83C5, 0x83CF, 0x03CA, 0x83DB, 0x03DE, 0x03D4, 0x83D1,
0x83F3, 0x03F6, 0x03FC, 0x83F9, 0x03E8, 0x83ED, 0x83E7, 0x03E2,
0x83A3, 0x03A6, 0x03AC, 0x83A9, 0x03B8, 0x83BD, 0x83B7, 0x03B2,
0x0390, 0x8395, 0x839F, 0x039A, 0x838B, 0x038E, 0x0384, 0x8381,
0x0280, 0x8285, 0x828F, 0x028A, 0x829B, 0x029E, 0x0294, 0x8291,
0x82B3, 0x02B6, 0x02BC, 0x82B9, 0x02A8, 0x82AD, 0x82A7, 0x02A2,
0x82E3, 0x02E6, 0x02EC, 0x82E9, 0x02F8, 0x82FD, 0x82F7, 0x02F2,
0x02D0, 0x82D5, 0x82DF, 0x02DA, 0x82CB, 0x02CE, 0x02C4, 0x82C1,
0x8243, 0x0246, 0x024C, 0x8249, 0x0258, 0x825D, 0x8257, 0x0252,
0x0270, 0x8275, 0x827F, 0x027A, 0x826B, 0x026E, 0x0264, 0x8261,
0x0220, 0x8225, 0x822F, 0x022A, 0x823B, 0x023E, 0x0234, 0x8231,
0x8213, 0x0216, 0x021C, 0x8219, 0x0208, 0x820D, 0x8207, 0x0202
};

uint16_t onfi_crc(uint8_t* buffer, uint32_t len)
{
    /* G(X) = X^16 + X^15 +X^2 + 1, 8005H 
     * 初始值 4F4Eh
     * 无XOR,无输出翻转
     */
    uint16_t crc = 0x4F4E;
	while (len--)
		crc = (crc < < 8) ^ crc16_table[((crc >> 8) ^ *buffer++) & 0x00FF];
	return crc;
}
 


审核编辑黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 闪存
    +关注

    关注

    16

    文章

    1688

    浏览量

    114226
  • NAND
    +关注

    关注

    16

    文章

    1543

    浏览量

    134791
  • 接口
    +关注

    关注

    33

    文章

    7639

    浏览量

    148485
  • ONFI
    +关注

    关注

    1

    文章

    4

    浏览量

    7660
收藏 人收藏

    评论

    相关推荐

    三星即将量产290层V-NAND闪存

    据韩国业界消息,三星最早将于本月开始量产当前业界密度最高的290层第九代V-NAND(3D NAND闪存芯片。
    的头像 发表于 04-17 15:06 244次阅读

    三星九代V-NAND闪存或月底量产,堆叠层数将达290层

    据韩媒Hankyung透露,第九代V-NAND闪存的堆叠层数将高达290层,但IT之家此前曾报道过,三星在学术会议上展示了280层堆叠的QLC闪存,其IO接口速度可达3.2GB/s。
    的头像 发表于 04-12 16:05 501次阅读

    一文解析NAND闪存接口ONFI

    ONFI 由100多家制造、设计或使用 NAND 闪存的公司组成的行业工作组,其中包括主要成员如 Intel 和镁光。该工作组旨在简化将 NAND
    发表于 04-03 12:26 447次阅读
    一文解析<b class='flag-5'>NAND</b>的<b class='flag-5'>闪存</b><b class='flag-5'>接口</b><b class='flag-5'>ONFI</b>

    昂科烧录器支持XinCun芯存科技的串行外设接口NAND闪存 XCSP4AAPK-IT

    芯片烧录行业领导者-昂科技术近日发布最新的烧录软件更新及新增支持的芯片型号列表,其中XinCun芯存科技的串行外设接口NAND闪存 XCSP4AAPK-IT已经被昂科的通用烧录平台AP8000所支持
    的头像 发表于 03-26 18:16 80次阅读
    昂科烧录器支持XinCun芯存科技的串行外设<b class='flag-5'>接口</b><b class='flag-5'>NAND</b><b class='flag-5'>闪存</b> XCSP4AAPK-IT

    三星计划NAND闪存价格谈判 欲涨价15%—20%

    三星计划NAND闪存价格谈判 欲涨价15%—20% 三星认为NAND Flash价格过低;在减产和获利优先政策的促使下三星计划与客户就NAND闪存
    的头像 发表于 03-14 15:35 281次阅读

    什么是SD NAND存储芯片?

    NAND介绍   什么是SD NAND?它俗称贴片式T卡,贴片式TF卡,贴片式SD卡,贴片式内存卡,贴片式闪存卡,贴片式卡...等等。虽然SD N
    发表于 01-05 17:54

    三星计划NAND闪存芯片每个季度涨价20%

    三星采取此举的目的很明确,希望通过此举逆转整个闪存市场,稳定NAND闪存价格,并实现明年上半年逆转市场等目标。
    的头像 发表于 11-03 17:21 1278次阅读

    三星24年生产第9代V-NAND闪存 SK海力士25年量产三层堆栈架构321层NAND闪存

    三星24年生产第9代V-NAND闪存 SK海力士25年量产三层堆栈架构321层NAND闪存 存储领域的竞争愈加激烈,三星电子计划在2023年正式生产第9代V-
    发表于 08-21 18:30 319次阅读

    SK海力士发布全球首款321层NAND

    SK海力士宣布将首次展示全球首款321层NAND闪存,成为业界首家开发出300层以上NAND闪存的公司。他们展示了321层1Tb TLC 4D NA
    的头像 发表于 08-10 16:01 746次阅读

    三星或提高512Gb NAND闪存晶圆报价 涨幅为15%

    据《电子时报》报道,三星提出的512gb nand闪存晶片单价为1.60美元,比2023年初的1.40美元约上涨15%。但消息人士表示,由于上下nand闪存的库存缓慢,很难说服上调价格
    的头像 发表于 08-02 11:56 790次阅读

    【贴片SD Card介绍】贴片式tf卡/SD NAND/SD2.0协议

    布局即可实现替换。 NAND Flash Menory 介绍 NAND Flash 有关资料均来自 KIOXIA 官网 。 存储单元结构 下图为闪存的内部存储单元结构(横截面)。存
    发表于 07-28 16:23

    NAND闪存内部结构解析

    NAND闪存是一种电压原件,靠其内存电压来存储数据。
    发表于 07-12 09:43 1545次阅读
    <b class='flag-5'>NAND</b><b class='flag-5'>闪存</b>内部结构解析

    NAND闪存特点及决定因素

    内存和NOR型闪存的基本存储单元是bit,用户可以随机访问任何一个bit的信息。而NAND闪存的基本存储单元是页(Page)(可以看到,NAND
    的头像 发表于 06-10 17:21 2038次阅读

    使用ONFI 1到4加速前进:50到800MBps

    闪存最初是随着外部存储设备(例如USB存储设备)进入家庭的,容量非常适中,只有几MB,现在已经达到数百GB。现在,它已经无处不在,从智能手机到物联网、可穿戴设备和消费电子产品等无数设备。随着应用程序的爆炸式增长,许多闪存协议应运而生,让我们谈谈其中之一 –
    的头像 发表于 05-26 15:30 1893次阅读
    使用<b class='flag-5'>ONFI</b> 1到4加速前进:50到800MBps

    NAND闪存 – 多芯片系统验证的关键元件

    NAND闪存上的位密度随着时间的推移而变化。早期的NAND设备是单层单元(SLC)闪存。这表明每个闪存单元存储一个位。使用多层单元(MLC)
    的头像 发表于 05-25 15:36 1320次阅读
    <b class='flag-5'>NAND</b><b class='flag-5'>闪存</b> – 多芯片系统验证的关键元件