0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

CW32 低电压检测器介绍

武汉芯源半导体有限公司 2022-12-08 14:05 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

低电压检测器(LVD)适用于监测VDDA电源电压或外部引脚输入电压,当被监测电压与LVD阈值的比较结果满足触发的条件时,LVD将会产生中断或者复位信号,通常用来处理一些紧急任务。LVD产生的中断或复位标志,只能通过软件程序清零,只有当中断或复位标志被清零后,在再次达到触发条件时,LVD才能再次产生中断或复位信号。本文以CW32L083为例,介绍LVD的使用方法。

低电压检测器(LVD)的主要特性:

1. 4路监测电压源:VDDA电源电压,PA00、PB00、PB11引脚输入

2. 16阶阈值电压,范围2.02V-3.76V

3. 3种触发条件,可以组合使用

电平触发:电压低于阈值

下降沿触发:电压跌落到阈值以下的下降沿

上升沿触发:电压回升到阈值以上的上升沿

4. 可触发产生中断或复位信号,二者不能同时产生

5. 8阶滤波可配置

6. 支持迟滞功能

7. 支持低功耗模式下运行,中断唤醒MCU

pYYBAGORfImAegxGAABA_d05W_E662.jpg

上图为CW32L083低电压检测器(LVD)的功能框图,LVD不仅可以监测VDDA电源电压,也可以监测外部引脚 (PA00、PB00、PB11)输入电压,通过控制寄存器LVD_CR0的SOURCE位域来选择,当使用外部引脚来监测电压时,需将对应的GPIO端口配置为模拟输入模式(GPIOx_ANALOG.PINy = 1)。

LVD的输出结果可以从PA01/PA08/PC12/PE02/PF02引脚输出,需将对应的GPIO口配置为数字输出模式,同时选择功能复用,下面为具体配置

//LVD I/O口初始化

void LVD_PortInit(void)

{

GPIO_InitTypeDef GPIO_InitStructure = {0};

//打开GPIOA时钟

__RCC_GPIOA_CLK_ENABLE();

//将PA08设置为LVD比较结果输出

GPIO_InitStructure.Pins = GPIO_PIN_8;

GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_Init(CW_GPIOA, &GPIO_InitStructure);

//将PA08复用为LVD比较结果输出

PA08_AFx_LVDOUT();

//将PA00设置为LVD的输入口

PA00_ANALOG_ENABLE();

}

迟滞功能

LVD 内置的电压比较器具有迟滞功能,可避免当 LVD 的被监测电压在阈值电压附近时,电压比较器的输出结果发生频繁翻转,增强系统抗干扰能力。只有当被监测电压高于或低于阈值电压达到20mV时,比较器输出信号才会发生翻转。具体波形如下图所示:

pYYBAGORfIqAQx8UAAA8Znz2QEc664.jpg

LVD的阈值电压根据LVD控制寄存器LVD_CR0的VTH位值决定,有效值0 ~ 15,如下表所示:

poYBAGORfIqALUXtAADCN_mLJ5M121.jpg

数字滤波功能

CW32L083的LVD支持数字滤波功能,以增强系统的鲁棒性,可将LVD电压比较的输出结果信号进行数字滤波,小于滤波宽度的信号被滤除,不会触发中断或复位,如下图所示:

poYBAGORfIqADizyAAAUCrccdZ0989.jpg

通过设置控制寄存器LVD_CR1的FLTEN位域为1,可使能数字滤波模块。设置控制寄存器 LVD_CR1 的 FLTCLK 位域可以选择数字滤波的时钟:

• FLTCLK位为1,选择HSIOSC作为滤波时钟

• FLTCLK位为0,选择内置RC振荡器时钟作为滤波时钟,其频率约150kHz

相关的宏定义如下所示:

#define LVD_FilterClk_RC150K ((uint32_t)0x00000000)

#define LVD_FilterClk_HSI ((uint32_t)0x00000010)

控制寄存器LVD_CR1的FLTTIME位域用于选择数字滤波的时钟个数,如下表所示:

poYBAGORfImAdALEAABYlXa0mBU740.jpg

从LVD状态寄存器LVD_SR的FLTV位域,可以读出经LVD数字滤波后的信号电平;当 GPIO 的功能复用为LVD_OUT时,数字滤波后的信号就可以从GPIO输出,以方便观察测量。

LVD中断

LVD支持在低功耗模式下工作,中断输出可将芯片从低功耗模式下唤醒。当被监测电压与LVD阈值的比较结果满足触发条件时,可产生中断或复位信号。产生中断还是复位信号由控制寄存器LVD_CR0的ACTION位域控制:

• ACTION为1,LVD触发产生复位 #define LVD_Action_Reset ((uint32_t)0x00000002)

• ACTION为0,LVD触发产生中断 #define LVD_Action_Irq ((uint32_t)0x00000000)

通过设置控制寄存器LVD_CR0的IE位域为1,使能LVD中断,满足触发条件时将产生LVD中断,中断标志位LVD_SR.INTF会被硬件置1,用户可以向INTF位写0,清除中断标志。设置控制寄存器LVD_CR1的LEVEL、FALL、RISE位域,可选择不同的中断或复位触发方式,三者可组合使用:

• LEVEL为1,被监测电压低于阈值时触发中断或产生复位

• FALL为1,被监测电压跌落到阈值以下的下降沿触发中断或产生复位

• RISE为1,被监测电压回升到阈值以上的上升沿触发中断或产生复位

相关的寄存器具体位域可参考下表:

pYYBAGORfIqAER7RAAOHOD8IGzE857.jpgpoYBAGORfImARo6NAAULbX0Gxk0476.jpgpoYBAGORfImAG3ZQAAGiLz3P118924.jpg

根据上述内容,简单介绍配置电压监测例程。LVD的输入通道设置为PA00,输出端口为PA08,门限电压为2.02V,利用LVD的中断实现当LVD输入通道电压低于或者高于门限电压时刻(利用上升沿和下降沿),PC03输出电平翻转一次。

void LVD_PortInit(void)

{

GPIO_InitTypeDef GPIO_InitStructure = {0};

//打开GPIOA时钟

__RCC_GPIOA_CLK_ENABLE();

//将PA08设置为LVD比较结果输出

GPIO_InitStructure.Pins = GPIO_PIN_8;

GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_Init(CW_GPIOA, &GPIO_InitStructure);

//将PA08复用为LVD比较结果输出

PA08_AFx_LVDOUT();

//将PA00设置为LVD的输入口

PA00_ANALOG_ENABLE();

}

int main(void)

{

LVD_InitTypeDef LVD_InitStruct = {0};

//LED初始化

LED_Init();

//配置测试IO口

LVD_PortInit();

LVD_InitStruct.LVD_Action = LVD_Action_Irq; //配置中断功能

LVD_InitStruct.LVD_Source = LVD_Source_PA00; //配置LVD输入口为PA00

LVD_InitStruct.LVD_Threshold = LVD_Threshold_2p02V; //配置LVD基准电压为2.02v

LVD_InitStruct.LVD_FilterEn = LVD_Filter_Enable; //LVD滤波模块开启

LVD_InitStruct.LVD_FilterClk = LVD_FilterClk_RC150K;//LVD滤波时钟为150KHz

LVD_InitStruct.LVD_FilterTime = LVD_FilterTime_4095Clk;

LVD_Init(&LVD_InitStruct);

LVD_TrigConfig(LVD_TRIG_FALL | LVD_TRIG_RISE, ENABLE); //LVD中断为上升沿和下降沿触发

LVD_EnableIrq(LVD_INT_PRIORITY);

LVD_ClearIrq();

FirmwareDelay(4800);

LVD_Enable(); //LVD使能

while (1)

{

if (gFlagIrq)

{

PC03_TOG();

gFlagIrq = FALSE;

}

}

}

/** @brief LED I/O初始化**/

void LED_Init(void)

{

GPIO_InitTypeDef GPIO_InitStructure = {0};

//打开GPIOC时钟

__RCC_GPIOC_CLK_ENABLE();

/* Configure the GPIO_LED pin */

GPIO_InitStructure.Pins = GPIO_PIN_2 | GPIO_PIN_3;

GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_Init(CW_GPIOC, &GPIO_InitStructure);

//LEDs are off.

PC02_SETLOW();

PC03_SETLOW();

}

//LVD中断服务函数

void LVD_IRQHandler(void)

{

LVD_ClearIrq(); //清除中断标志

gFlagIrq = TRUE; //将gFlagIrq赋值为TURE,使main函数中的if判断语句生效

}

上述例程中的LVD_PortInit()为前文LVD的IO口配置函数,下面例程为通过寄存器配置LVD,具体功能与上述例程一样。

void LVD_PortInit(void)

{

GPIO_InitTypeDef GPIO_InitStructure = {0};

//打开GPIOA时钟

__RCC_GPIOA_CLK_ENABLE();

//将PA08设置为LVD比较结果输出

GPIO_InitStructure.Pins = GPIO_PIN_8;

GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_Init(CW_GPIOA, &GPIO_InitStructure);

//将PA08复用为LVD比较结果输出

PA08_AFx_LVDOUT();

//将PA00设置为LVD的输入口

PA00_ANALOG_ENABLE();

}

int main(void)

{

//LED初始化

LED_Init();

//配置测试IO口

LVD_PortInit();

CW_LVD->CR0_f.SOURCE=1; //选择待监测的电压来源为PA00

CW_LVD->CR0_f.VTH=0; //选择阈值电压为2.02V

CW_LVD->CR1_f.FLTTIME=7; //选择 LVD 滤波宽度为4095个时钟周期信号

CW_LVD->CR1_f.FLTCLK=0; //选择滤波时钟为150KHz的RC振荡时钟

CW_LVD->CR1_f.FLTEN=1; //使能 LVD 滤波

CW_LVD->CR1_f.RISE=1; //下降沿触发

CW_LVD->CR1_f.FALL=1; //上升沿触发

CW_LVD->CR0_f.ACTION=0; //选择LVD触发为中断

CW_LVD->CR0_f.IE=1; //使能LVD中断

NVIC_ClearPendingIRQ(LVD_IRQn); //使能NVIC中断向量表中的LVD中断

NVIC_SetPriority(LVD_IRQn, 3);

NVIC_EnableIRQ(LVD_IRQn);

FirmwareDelay(4800);

CW_LVD->CR0_f.EN=1; //使能LVD

CW_LVD->SR_f.INTF=0; //清除LVD中断标志

while (1)

{

if (gFlagIrq)

{

PC03_TOG();

gFlagIrq = FALSE;

}

}

}

/**@brief LED I/O初始化**/

void LED_Init(void)

{

GPIO_InitTypeDef GPIO_InitStructure = {0};

//打开GPIOC时钟

__RCC_GPIOC_CLK_ENABLE();

/* Configure the GPIO_LED pin */

GPIO_InitStructure.Pins = GPIO_PIN_2 | GPIO_PIN_3;

GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_Init(CW_GPIOC, &GPIO_InitStructure);

//LEDs are off.

PC02_SETLOW();

PC03_SETLOW();

}

//LVD中断服务函数

void LVD_IRQHandler(void)

{

LVD_ClearIrq(); //清除中断标志

gFlagIrq = TRUE; //将gFlagIrq赋值为TURE,使main函数中的if判断语句生效

}

上述例程功能为在PA00的输入电压值低于2.02v或高于2.02v的时刻,LVD会产生中断,PC03的输出电平会产生翻转,可利用CW32L083的开发板和数字电源进行测试,将PA00和数字电源连接,调节数字电源输出电压,在升高至门限电压以上或者下降至门限电压以下,LED1的状态会发生翻转。

LVD的相关函数及功能,可参考下述介绍。

1.void LVD_EnableNvic(uint8_t intPriority);

//使能NVIC中LVD中断

2.void LVD_DisableNvic(void);

//禁止NVIC中LVD中断

3.void LVD_TrigConfig(uint16_t LVD_TRIG, FunctionalState NewState);

//配置LVD中断/系统复位触发方式

4.void LVD_EnableIrq(uint8_t intPriority);

//使能LVD中断

5.void LVD_DisableIrq(void);

//禁止LVD中断

6.void LVD_ClearIrq(void);

//清除LVD中断标志

7.boolean_t LVD_GetIrqStatus(void);

//获取LVD中断标志

8.FlagStatus LVD_GetFlagStatus(uint16_t LVD_FLAG);

//获取LVD指定的状态位

9.boolean_t LVD_GetFilterResult(void);

//获取Filter结果

10.void LVD_Init(LVD_InitTypeDef* LVD_InitStruct);

//LVD初始化

11.void LVD_DeInit(void);

//LVD去初始化

12.void LVD_Enable(void);

//使能LVD

13.void LVD_Disable(void);

//停止LVD

CW32的LVD的使用介绍到此结束。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 微控制器
    +关注

    关注

    48

    文章

    8250

    浏览量

    162419
  • 单片机
    +关注

    关注

    6074

    文章

    45340

    浏览量

    663628
  • mcu
    mcu
    +关注

    关注

    147

    文章

    18613

    浏览量

    387196
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    CW32不是宽电压供电吗?为啥好多设计还是加个LDO3.3V的电源?

    CW32不是宽电压供电么?为啥好多设计还是加个LDO3.3V的电源?
    发表于 12-08 08:11

    关于CW32 互补PWM 程序调试的疑问求解

    在调试CW32 输出互补PWM 的程序时,发现在线调试时波形输出正常,但是当把程序在下到CW32 自行运行时,波形输出不正常,这是什么原因导致的呢?
    发表于 12-08 07:02

    CW32 MCU在高频率运行下的系统稳定性的提升方案

    ,通过合理的电源管理和热管理策略,保持系统稳定性,包括动态电压调节(DVS)、节能模式切换、以及散热方案优化等。 通过这些稳定性提升方案,开发者能够有效应对CW32 MCU在高频运行时面临的挑战,确保系统在高性能工作的同时,保持长期的稳定和可靠运行。
    发表于 12-04 08:04

    CW32单片机在智能马桶的应用

    1.温度感应与控制 智能马桶内设有温度传感,通过CW32单片机的处理,可以实时感知到用户所需的座圈温度并根据用户的设定进行调节。当温度过高或过低时,单片机将发出信号,通过控制模块对座圈的加热或制冷
    发表于 12-04 08:01

    基于芯源CW32 MCU的LED闪烁示例及代码分析

    最近我在项目中使用了芯源的CW32 MCU,这是一款非常适合物联网和低功耗应用的微控制。在初步学习和使用中,我做了一个简单的LED闪烁实验,通过这篇帖子给大家分享一下代码及相关的配置步骤。 硬件
    发表于 12-04 06:52

    CW32 MCU温度监测应用

    最近,我在项目中使用CW32 MCU,来实现一个简单的温度监测系统。CW32的灵活性和性能让我在这个应用中得心应手。以下是我的实现过程和代码示例。 应用简介本项目通过连接一个温度传感LM35来实时
    发表于 12-03 08:03

    CW32系列MCU在温控应用的优势

    --低功耗模式(Sleep,DeepSleep) --上电和掉电复位(POR/BOR) --可编程低电压检测器(LVD) ● 实时时钟和日历 --支持由 Sleep/DeepSleep 模式唤醒 ● 段码屏显示
    发表于 12-03 07:12

    cw32 systick怎么用?

    cw32 systick怎么用
    发表于 12-01 08:10

    CW32定时及中断介绍

    ,否则将触发系统复位。WWDT 通常被用来监测有严格时间要求的程序执行流程,防止由外部干扰或未知条件造成应用程序的执行异常, 导致发生系统故障。 01 CW32定时中断 定时中断是由CW
    发表于 12-01 07:08

    如何在CW32 MCU上优化I2C通信

    在嵌入式系统中,CW32 MCU的I2C接口通常用于与各种外设(如EEPROM、传感等)进行数据通信。为了实现高效、稳定的I2C通信,必须考虑频率调节和数据完整性的问题。本文将聚焦于如何在CW32
    发表于 11-27 06:25

    使用J-Flash来编程CW32 MCU

    1.安装J-Flash: 从SEGGER官方网站下载最新版本的J-Flash工具。 按照安装向导的指示完成安装过程。 2.连接硬件: 将CW32 MCU通过调试(如J-LINK)连接到你的计算机
    发表于 11-25 07:00

    CW32 MCU用什么IDE开发?

    推荐使用IAR Embedded Workbench for ARM、Keil μVision for ARM等IDE开发CW32 MCU应用,其中新版本IAR EWARM直接支持CW32 MCU,Keil MDK-ARM则需要安装CW
    发表于 11-12 07:52

    CW32 MCU有哪些系列?

    目前CW32 MCU有通用高性能MCU、安全低功耗MCU、无线射频MCU等3个系列。其中射频MCU集成了无线收发,主要包括CW32R031(2.4GHz BLE-Lite)系列和CW
    发表于 11-12 07:34

    CW32 MCU的工作电压、工作温度是多少?

    CW32通用型MCU工作电压是1.65V~5.5V,射频MCU工作电压则是1.8V/2.2V~3.6V;通用型CW32F系列MCU,比如:CW
    发表于 11-12 06:49

    CW32 MCU用什么仿真开发?

    理论上各主流IDE枚举的、支持ARM Cortex内核的所有硬件仿真,比如:J-LINK,ULINK,DAP,ST-Link等,都可以仿真、下载CW32 MCU的应用代码。如果想实现量产或者离线下载应用代码,则必须配套支持CW32
    发表于 11-12 06:01