0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用惯性微流控技术实现微通道内非尺寸依赖的细胞可控三维聚焦

微流控 来源:分析人 2023-06-19 15:38 次阅读

微流控流式细胞术能够以高通量、连续流动的方式测量细胞流经检测区域时的荧光信号光学图像和阻抗变化,可以更好地了解细胞功能,测量单个细胞的生物物理信息,以及表征大样本中的细胞异质性,为基础生物学研究和临床诊断提供了重要的工具。

随着对于细胞检测精度需求的提升,将细胞进行三维聚焦逐渐成为新的思路,这可以使得不同尺寸细胞在固定的截面位置逐个经过检测区域,从而避免了由于细胞位置变化和多个细胞同时在检测区域中而导致的检测误差。然而,目前已报道的无鞘三维聚焦方案仍然不能解决细胞偏心聚焦的问题,无法解决细胞表面的不均匀变形,以及通道壁面对细胞轮廓识别和光学检测的干扰。

近期,东南大学项楠教授课题组报道了一种新型的高深宽比非对称蛇形(HARAS)微通道,用于探索非尺寸依赖的可控聚焦,并成功实现细胞在通道三维中心的单线聚焦,相关成果以“Controllable Size-Independent Three-Dimensional Inertial Focusing inHigh-Aspect-Ratio Asymmetric Serpentine Microchannels”为题发表在国际化学权威杂志Analytical Chemistry上。文章第一作者为倪陈博士,通讯作者为项楠教授。

在有限雷诺数下,颗粒在牛顿流体中沿弯流道流动时,会受到惯性升力和Dean拽力共同作用,该团队设计的HARAS微通道(图1A)能够在不影响颗粒垂直聚焦的同时,完美地将惯性升力和Dean阻力进行有机结合,迫使颗粒在通道中迁移至唯一的受力平衡位置。

具体而言,该团队采用的高深宽比通道结构通常在直流道中可以将颗粒聚焦至通道长壁中心附近的两个平衡位置,蛇形流道用以产生Dean流来调整颗粒的横向位置,从而有机会将原本的双列聚焦优化成单线聚焦(图1B-1C)。然而Dean流由于具有混合效应,往往对颗粒的垂直聚焦产生负面影响。

因此,该团队采用浸入边界法(IBM)耦合格子玻尔兹曼方法(LBM)和有限元方法(FEM)来模拟颗粒在流体中完整的三维迁移轨迹,并计算颗粒和流体的相互作用(图2A)。通过分析不同曲率下不同尺寸颗粒的运动轨迹和Dean流分布(图2B),解析惯性升力和Dean阻力对颗粒聚焦的影响,确定可忽略Dean流混合效应且适用多尺寸颗粒的最佳曲率结构,并获得了与实验结果高度一致的数值轨迹(图2C)。

b107db46-0e72-11ee-962d-dac502259ad0.png

图1 (A)HARAS微通道示意图;(B)颗粒从无序状态到单线聚焦的过程示意图;(C)颗粒在通道三维中心的单线聚焦(来源:Anal. Chem.)

b114aa7e-0e72-11ee-962d-dac502259ad0.png

图2 (A)数值模拟方法示意图;(B)不同位置处颗粒在Dean流中相应位置;(C)颗粒迁移轨迹模拟结果(来源:Anal. Chem.)

基于优化的HARAS微通道,该团队对10μm和15 μm颗粒以及A549和MCF-7细胞在不同流速下进行了聚焦测试。研究表明,不同尺寸的颗粒和细胞均在能较广的流速范围内实现单线聚焦(图3A-3D)。得益于这种高度稳定的聚焦状态,颗粒/细胞可以在相同位置以三维单线聚焦的形式进入出口直线通道,并随流速的增加,单线轨迹逐渐从内流道壁向外流道壁移动,实现聚焦位置的可控化。

此外,在流速调控的过程中,水平和垂直方向上的聚焦位置会相交于一点(图3A-3C),即实现颗粒/细胞在通道三维中心的单线聚焦(图3E)。这种流速调控的聚焦方式可以用于细胞不同后续单元的可控分配,而细胞在通道三维中心的单线聚焦也将为单细胞封装、液滴聚焦和细胞图像识别创造新的贡献。

b123b5be-0e72-11ee-962d-dac502259ad0.png

图3 颗粒和细胞在不同流速下的聚焦状态(来源:Anal. Chem.)

综上所述,该研究工作克服了以往报道中的偏心聚焦问题,为惯性微流控的三维聚焦提供了新的见解,所设计的微流控装置具有结构简单、成本低和稳定实现三维惯性聚焦等优点,将为后续的单细胞检测和分析提供稳定、高通量和位置可控的方案。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • IBM
    IBM
    +关注

    关注

    3

    文章

    1671

    浏览量

    74272
  • BRAS
    +关注

    关注

    0

    文章

    11

    浏览量

    9739
  • 微流控芯片
    +关注

    关注

    13

    文章

    228

    浏览量

    18643
  • Fem
    Fem
    +关注

    关注

    4

    文章

    35

    浏览量

    19704

原文标题:利用惯性微流控技术,实现微通道内非尺寸依赖的细胞可控三维聚焦

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    泰来三维|某学校发电风筒三维扫描# 三维扫描建模

    三维扫描
    泰来三维
    发布于 :2024年04月26日 09:48:55

    泰来三维|先临三维扫描仪扫描文物案例分享

    三维扫描仪
    泰来三维
    发布于 :2024年04月18日 16:16:57

    基于双极性电极阵列的微流控芯片,可实现细胞可控、非接触三维旋转

    细胞的精确旋转在单细胞分析、药物发现和生物体分析等多个领域都具有重要意义。通过细胞三维旋转,将有助于发现隐藏的遗传和结构细节,在显微手术、小生物表型和筛选中至关重要。
    的头像 发表于 03-07 10:53 398次阅读
    基于双极性电极阵列的微流控芯片,可<b class='flag-5'>实现</b><b class='flag-5'>细胞</b><b class='flag-5'>可控</b>、非接触<b class='flag-5'>三维</b>旋转

    基于扭曲纤维的3D螺旋微流控器件制造

    三维(3D)螺旋微流控技术的发展为利用惯性聚焦分析小体积液体开辟了新的途径,从而推进了化学、物理和生物学科的发展。
    的头像 发表于 02-22 09:37 164次阅读
    基于扭曲纤维的3D螺旋微流控器件制造

    智慧矿山三维可视化,煤矿开采数字孪生 #数字孪生 #三维可视化

    三维数字孪生
    阿梨是苹果
    发布于 :2023年11月02日 10:06:59

    利用惯性-磁微流控技术实现恶性肿瘤细胞的快速、高纯度分离

    大量血细胞和淋巴细胞的存在严重影响了恶性胸腹腔积液中恶性肿瘤细胞检测的灵敏度。
    的头像 发表于 10-30 15:54 1159次阅读
    <b class='flag-5'>利用惯性</b>-磁微流控<b class='flag-5'>技术</b><b class='flag-5'>实现</b>恶性肿瘤<b class='flag-5'>细胞</b>的快速、高纯度分离

    垃圾焚烧站运行三维动画

    三维动画
    阿梨是苹果
    发布于 :2023年10月30日 10:01:50

    纳米级测量仪器:窥探微观世界的利器

    表面轮廓仪以白光干涉技术原理,通过测量干涉条纹的变化来测量表面三维形貌,专用于精密零部件之重点部位表面粗糙度、微小形貌轮廓及尺寸接触式快速测量。2、激光共
    发表于 10-11 14:37

    一种微小爬壁机器人三维位置测量的新方法

    提 出 了一 种 小 爬 壁 机 器 人 位 置 测 量 的新方 法 。笔 者 通 过 深 入 分 析 研 究各 种 位 置 测 控 方 法 与 系统 ,提 出采 用单 目视 觉方 法
    发表于 09-20 07:25

    为什么激光共聚焦显微镜成像质量更好?

    结构进行三维形貌重建: 2.快速重建出被测晶圆激光镭射槽的三维轮廓并进行多剖面分析,获取截面的槽道深度与宽度信息: 3.对光学膜表面微结构实现快速自动化测量,提供高度、宽度和角度等一系列轮廓
    发表于 08-22 15:19

    一文详解导航系统的惯性技术原理

    惯性导航技术惯性技术的核心和发展标志,惯性导航系统 (Inertia navigation system,INS)
    发表于 08-22 09:56 3539次阅读
    一文详解导航系统的<b class='flag-5'>惯性</b><b class='flag-5'>技术</b>原理

    光学3D表面轮廓仪可以测金属吗?

    重建物体的三维模型。这种测量方式具有接触性、高精度、高速度等优点,非常适合用于金属等材料的表面测量。 光学3D表面轮廓仪可以测量金属的形状、表面缺陷、几何尺寸等多个方面: 1、形状测量。光学3D表面
    发表于 08-21 13:41

    结构深、角度大、反射差?用共聚焦显微镜就对啦!

    和共聚焦3D显微形貌检测技术,广泛应用于涉足超精密加工领域的三维形貌检测与表面质量检测方案。其中,VT6000系列共聚焦显微镜,在结构复杂且反射率低的表面3D微观形貌重构与检测方面具有
    发表于 08-04 16:12