0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

RF-to-BIT解决方案为材料分析提供精确的相位和幅度数据

星星科技指导员 来源:ADI 作者:Ryan Curran, Qui Luu, 2023-06-17 09:43 次阅读

Ryan Curran, Qui Luu, and Maithil Pachchigar

在偏远地区分析材料时,在材料内放置探头是不可行的,高频收发器可以提供一种实用的方法,用于准确量化材料的体积分数,而不会产生直接接触材料的不利影响。正交解调器为测量这些应用中的幅度和相移提供了一种新颖、可靠的方法。此处介绍的接收器信号链使用宽带正交解调器ADL5380、超低功耗、低失真、全差分ADC驱动器ADA4940-2和双通道差分、7903位、16 MSPS PulSAR ADC提供准确的数据,同时确保安全、经济的运行。

在图1所示的接收器中,连续波信号从发射(Tx)天线通过待分析的材料发送到接收(Rx)天线。接收到的信号将相对于原始发射信号衰减和相移。这种幅度变化和相移可用于确定介质的内容。

wKgaomSNEN-AKk1JAAB8SahQTr4284.png

图1.接收器框图。

幅度和相移可以直接与元件的透射率和反射率特性相关,如图2所示。例如,在油气水流动的情况下,水的介电常数、损耗和分散系数高,油的介电常数、损耗和分散度极低。

wKgZomSNEOOAPxfaAAC4n5Sornc740.png

wKgZomSND8aAHw0bAABmKLbXnVY900.png

图2.不同均质介质的透射率和反射率。

接收器子系统实现

图3所示的接收器子系统将RF信号转换为数字信号,以精确测量幅度和相位。信号链包括一个正交解调器、一个双通道差分放大器和一个双通道差分SAR ADC。该设计的主要目标是为高频RF输入提供具有宽动态范围的高精度相位和幅度测量。

wKgaomSND8iAbkktAAEMr1mB7qQ654.png

图3.用于材料分析的简化接收器子系统。

正交解调器

正交解调器提供同相 (I) 信号和正好错相 90° 的正交 (Q) 信号。I和Q信号是矢量量,因此可以使用三角恒等式计算接收信号的幅度和相移,如图4所示。本振(LO)输入是原始发射信号,RF输入是接收信号。解调器生成和差项。两个信号的频率完全相同,ω瞧= ω射频,因此高频和项将被滤除,而差分项驻留在直流。接收到的信号将具有不同的相位,φ射频,比传输信号的信号,φ瞧.这种相移,φ瞧– ϕ射频,是由于介质的介电常数,将有助于定义材料内容。

wKgZomSND8iAEfa_AABqxHMsnUc656.png

wKgaomSND8mAIkYDAABndHxHr8g720.png

图4.使用正交解调器进行幅度和相位测量。

实际I/Q解调器存在许多缺陷,包括正交相位误差、增益不平衡和LO-RF泄漏,所有这些都会降低解调信号的质量。要选择解调器,首先要确定对RF输入频率范围、幅度精度和相位精度的要求。

ADL5采用5380 V单电源供电,可接受400 MHz至6 GHz的RF或IF输入频率,非常适合接收器信号链。其差分 I 和 Q 输出配置为提供 5.36dB 电压转换增益,可将 2.5V p-p 差分信号驱动至 500 Ω负载。其 10.9dB NF、11.6dBm IP1dB 和 29.7 dBm IIP3 @ 900 MHz 可提供出色的动态范围,而其 0.07dB 幅度平衡和 0.2° 相位平衡可实现出色的解调精度。该器件采用先进的 SiGe 双极工艺制造,采用微型 4mm × 4mm 24 引脚 LFCSP 封装。

ADC 驱动器和高分辨率精密 ADC

ADA4940-2全差分双通道放大器具有出色的动态性能和可调输出共模特性,非常适合驱动高分辨率、双通道SAR ADC。该器件由 5V 单电源供电,提供 ±5V 差分输出和 2.5V 共模。配置为提供2 (6 dB)增益,可将ADC输入驱动至满量程。RC滤波器(22 Ω/2.7 nF)有助于限制噪声,并减少来自ADC输入端容性DAC的反冲。该器件采用专有的 SiGe 互补双极工艺制造,采用微型 4mm × 4mm 24 引脚 LFCSP 封装。

AD7903是双通道、16位、1 MSPS逐次逼近型ADC,具有出色的精度,具有±0.006%满量程增益误差和±0.015 mV失调误差。该器件采用2.5 V单电源供电,在12 MSPS时功耗仅为1 mW。使用高分辨率ADC的主要目标是实现±1°相位精度,特别是当输入信号具有较小的直流幅度时。ADC所需的5 V基准电压源由低噪声基准电压源ADR435产生。

如图5所示,接收器子系统采用ADL5380-EVALZ、EB-D24CP44-2Z、EVAL-AD7903SDZ和EVAL-SDP-CB1Z评估套件实现。 这些电路组件针对子系统中的互连进行了优化。两个高频锁相输入源提供RF和LO输入信号。

wKgZomSND8mAaf7CAAKF0fUI10w434.png

图5.接收机子系统评估平台。

表1总结了接收器子系统中每个组件的输入和输出电压电平。解调器RF输入端的11.6 dBm信号将在ADC满量程范围的–1 dB范围内产生输入。该表假设ADL500的负载为5 Ω、转换增益为3573.4 dB、功率增益为–643.5380 dB,ADA6-4940的增益为2 dB。该接收机子系统的校准例程和性能结果将在以下各节中讨论。

表 1.接收器子系统中每个组件的输入和输出电压电平

射频输入
(分贝)
ADL5380 输出 AD7903 输入
(分贝) (V p-p)
+11.6 +6.957 4.455 –1.022
0 –4.643 1.172 –12.622
–20 –24.643 0.117 –32.622
–40 –44.643 0.012 –52.622
–68 –72.643 466µ –80.622

接收机子系统误差校准

接收器子系统包含三个主要误差源:失调、增益和相位。

I和Q通道的各个差分直流幅度相对于RF和LO信号的相对相位具有正弦关系。因此,I和Q通道的理想直流幅度可以计算如下:

wKgaomSND8qAIjoNAAAY62SMEyk048.png

(3)

wKgZomSND8uAKTM6AAAZdiEZscI557.png

(4)

当相位通过极性电网时,理想情况下,某些位置应产生相同的电压。例如,I(余弦)通道上的电压应与+90°或–90°的相移相同。但是,与RF和LO的相对相位无关的恒定相移误差将导致子系统通道为应产生相同直流幅度的输入相位产生不同的结果。如图6和图7所示,当输入应为0 V时,会生成两个不同的输出代码。在这种情况下,–37°相移远大于包含锁相环的实际系统中的预期。结果是 +90° 实际显示为 +53°,–90° 显示为 –127°。

结果以–10°至+180°的180°步长收集,未校正的数据生成图6和图7所示的椭圆形状。该误差可以通过确定系统中存在的附加相移量来解释。表2显示,系统相移误差在整个传递函数中是恒定的。

表 2.接收器子系统摘要 0dBm RF 输入幅度下测量的相移。

输入相位射频至LO 平均 I 通道输出代码 平均Q通道输出代码 I 通道电压 Q通道电压 测量相位 测量的接收器子系统相移
–180° –5851.294 +4524.038 –0.893 +0.690 +142.29° –37.71°
–90° –4471.731 –5842.293 –0.682 –0.891 –127.43° –37.43°
+5909.982 –4396.769 +0.902 –0.671 –36.65° –36.65°
+90° +4470.072 +5858.444 +0.682 +0.894 +52.66° –37.34°
+180° –5924.423 +4429.286 –0.904 +0.676 +143.22° –36.78°

系统相位误差校准

步长为10°时,图37所示系统的平均测量相移误差为–32.5°。有了这个额外的相移,现在可以计算调整后的子系统直流电压。变量φPHASE_SHIFT定义为观察到的平均附加系统相移。相位补偿信号链中产生的直流电压可计算为:

wKgaomSND8yAQ7N1AAAxKwrYz7s772.png

(5)

wKgZomSND8yAEROjAAAvYWkWLwA210.png

(6)

等式5和等式6提供了给定相位设置的目标输入电压。子系统现已线性化,失调误差和增益误差现在可以校正。线性化的I和Q通道结果也如图6和图7所示。数据集的线性回归生成图中所示的最佳拟合线。该线是每个转换信号链的测量子系统传递函数。

wKgaomSND82AZ2tkAABOCRiPym0955.png


图6.线性化 I 沟道结果。
(5)

wKgZomSND82AVLcAAABOz7T96QA092.png


图7.线性化Q沟道结果。
(6)

系统失调误差和增益误差校准

理想情况下,接收器子系统内每个信号链的失调应为0 LSB,但I和Q通道的测量失调分别为–12.546 LSB和+22.599 LSB。最佳拟合线的斜率表示子系统的斜率。理想的子系统斜率可以计算为:

wKgaomSND86AHtjzAAAo76tKt4s283.png

(7)

图6和图7中的结果表明,I和Q通道的测量斜率分别为6315.5和6273.1。必须调整这些斜率以校正系统增益误差。校正增益误差和失调误差可确保使用公式1计算的信号幅度与理想信号幅度相匹配。失调校正与测量的失调误差正好相反:

wKgZomSND8-AKKv9AAAa0DCkmTk993.png

(8)

增益误差校正系数为:

wKgaomSND8-ATlPYAAAfiOwsLBg699.png

(9)

收到的转换结果可以通过以下方式更正:

wKgZomSND9CAUaCfAAA5cybcJjQ839.png

(10)

子系统的校准直流输入电压计算如下:

wKgaomSND9CABvasAAAn4wTubyM369.png

(11)

应在I和Q通道上使用公式11来计算每个子系统信号链的感知模拟输入电压。这些完全调整的I和Q通道电压用于计算由各个直流信号幅度定义的RF信号幅度。为了评估完整校准程序的准确性,可以将收集的结果转换为解调器输出端产生的理想子系统电压,就像不存在相移误差一样。这可以通过将先前计算的平均直流幅度乘以每次试验中测量相位的正弦分数来完成,并消除计算出的相移误差。计算结果如下所示:

wKgZomSND9GACKs0AABAHNENgMQ084.png

(12)

wKgaomSND9KAczOJAABCCD0bWmA514.png

(13)

φPHASE_SHIFT是先前计算的相位误差,平均校准后幅度是公式1的直流幅度结果,已补偿失调误差和增益误差。表3显示了0 dBm RF输入幅度情况下不同目标相位输入下的校准程序结果。公式12和公式13中执行的计算是要内置到任何系统中的校正因子,旨在以此处介绍的方式检测相位和幅度。

接收机子系统评估结果

表 3.在某些目标相位输入端以0 dBm RF输入幅度获得结果。

目标阶段 I 通道完全校正输入电压 Q通道完全校正输入电压 完全校正的相位结果 绝对测量相位误差
–180° –1.172 V +0.00789 V –180.386° 0.386°
–90° –0.00218 V –1.172 V –90.107° 0.107°
+1.172 V +0.0138 V +0.677° 0.676°
0.676° +0.000409 V +1.171 V +89.98° 0.020°
+180° –1.172 V +0.0111 V +180.542° 0.541°

图8是测量的绝对相位误差的直方图,显示从–1°到+10°每180°步进的精度优于180°。

wKgZomSND9KAKfBiAAAmT14zeiI843.png

图8.0 dBm 输入电平的测量绝对相位误差直方图,相位步长为 10°。

对于任何给定输入电平的精确相位测量,感知的相移误差(φPHASE_SHIFT) 的 RF 相对于 LO 应该是恒定的。如果测量的相移误差随着目标相位步长(φ目标)或幅度,则此处介绍的校准例程将开始失去精度。室温下的评估结果表明,在11 MHz时,RF幅度范围从最大6.20 dBm到大约–900 dBm,相移误差相对恒定。

图9显示了接收器子系统的动态范围以及相应的幅度引起的附加相位误差。当输入幅度减小到–20 dBm以上时,相位误差校准精度开始下降。系统用户需要确定信号链误差的可接受水平,以确定可接受的最小信号幅度。

wKgaomSND9OAIkv4AABnoFlimog705.png

图9.接收机子系统的动态范围和相应的附加相位误差。

图9所示的结果是使用5 V ADC基准电压源收集的。可以减小ADC基准电压源的幅度,从而为系统提供更小的量化电平。这将逐步提高小信号的相位误差精度,但会增加系统饱和的可能性。为了增加系统动态范围,另一个有吸引力的选择是实施过采样方案,以提高ADC的无噪声位分辨率。平均样本每增加一倍,系统分辨率就会提高<>/<> LSB。给定分辨率增加的过采样率计算如下:

wKgZomSND9SAfaJiAAAczKfD7Bo286.png

(14)

当噪声幅度不再足以在采样之间随机改变ADC输出代码时,过采样将达到收益递减点。此时,无法再提高系统的有效分辨率。过采样导致的带宽降低不是一个重大问题,因为系统正在测量幅度缓慢变化的信号。

AD7903评估软件提供校准程序,允许用户针对三个误差源(相位、增益和失调)校正ADC输出结果。用户需要用他们的系统收集未校正的结果,以确定本文中计算的校准系数。图10显示了突出显示校准系数的GUI。确定系数后,该面板还可用于提供解调器的相位和幅度结果。极坐标图提供了观察到的RF输入信号的视觉指示。幅度和相位计算使用公式1和公式2进行。通过使用“样本数”下拉框调整每次捕获的样本数,可以控制过采样率。

wKgaomSND9SAd_eaAABzwJH2ZLA011.png

图 10.接收器子系统校准 GUI。

结论

本文介绍了与遥感应用相关的主要挑战,并提出了一种新颖的解决方案,使用ADL5380、ADA4940-2和AD7903接收器子系统来准确可靠地测量材料含量。所提出的信号链具有宽动态范围,在0 MHz时可实现360°至1°的测量范围,精度优于900°。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 驱动器
    +关注

    关注

    51

    文章

    7310

    浏览量

    142969
  • 解调器
    +关注

    关注

    0

    文章

    284

    浏览量

    25590
  • adc
    adc
    +关注

    关注

    95

    文章

    5651

    浏览量

    539481
收藏 人收藏

    评论

    相关推荐

    原装正品Agilent E4991A射频阻抗/材料分析

    Cascade Microtech 提供)上进行晶圆测量。温度特性评估温度特性测试套件E4991A-007 是一款元器件和材料进行温度特性测量的新型解决方案。该选件可在- 55°C
    发表于 07-12 16:38

    完整时钟树解决方案设计师们提供快速解决方案

    架构师)是业内首款时钟和定时工具;这个工具建议用户使用一个包含TI广泛计时产品库中器件的系统时钟树解决方案。这个已获专利的多部分推荐算法—这款工具的精髓所在—那些寻找高性能、灵活计时解决方案的设计师们
    发表于 09-03 15:45

    DKH企业级大数据解决方案的优势分析

    :以大数据云计算技术核心的,统一数据管控解决方案以大快的DKH基础,增加数据可视化,异构
    发表于 11-02 13:25

    请问有带有测量幅度相位时用于校准模块的AD7902-03评估软件吗

    在“CN0374:RF至位解决方案提供6 GHz信号的精密相位幅度数据“这篇文档中看到AD7902_03的评估软件是带有测量
    发表于 02-14 08:21

    16通道,24位ΔΣADC,数据采集提供小巧灵活和精确解决方案

    DN297-16通道,24位ΔΣADC,数据采集提供小巧,灵活和精确解决方案
    发表于 07-12 14:26

    国产网分再上新!RIGOL矢量网络分析仪(VNA)来了

    器的系统测量误差,进行精确的信号完整性测量,提供从器件性能到信号质量的一体化解决方案,解决您的诸多测量问题!一、 行业应用矢量网络分析
    发表于 08-11 10:54

    测试毫米波发生器性能的信号分析解决方案

    了新的 N9042B UXA x 系列信号分析解决方案。它提供了宽的分析带宽和深的动态范围,解决了困难的 mmWave 挑战,包括紧张的设计边缘和时间线,复杂的调制和严格的标准。优势
    发表于 03-15 17:45

    RF至位解决方案可为材料分析应用提供精密的相位幅度数据

    RF至位解决方案可为材料分析应用提供精密的相位幅度数据
    发表于 01-07 14:35 14次下载

    频谱图怎么画 幅度谱和相位谱是什么意思

    为了能既方便又明白地表示一个信号在不同频率下的幅值和相位,可以采用成为频谱图的表示方法。在傅里叶分析中,把各个分量的幅度|Fn|或 Cn 随着频率nω1的变化称为信号的幅度谱。而把各个
    发表于 09-18 18:17 16.5w次阅读
    频谱图怎么画 <b class='flag-5'>幅度</b>谱和<b class='flag-5'>相位</b>谱是什么意思

    labview FFT分析信号频谱幅度谱和相位谱实例

    labview FFT分析信号频谱幅度谱和相位谱简单实例,
    发表于 02-28 16:45 341次下载

    RF电路板提供精密相位幅度数据解决方案

    图1中的电路可精确地将400 MHz至6 GHz RF输入信号转换为相应的数字幅度和数字相位。 该信号链可实现0°到360°相位测量,900
    发表于 01-18 14:10 1476次阅读
    <b class='flag-5'>RF</b>电路板<b class='flag-5'>提供</b>精密<b class='flag-5'>相位</b>和<b class='flag-5'>幅度数据</b><b class='flag-5'>解决方案</b>

    CN0374:RF至位解决方案提供6 GHz信号的精密相位幅度数据

    CN0374:RF至位解决方案提供6 GHz信号的精密相位幅度数据
    发表于 03-19 09:26 5次下载
    CN0374:<b class='flag-5'>RF</b>至位<b class='flag-5'>解决方案</b>可<b class='flag-5'>提供</b>6 GHz信号的精密<b class='flag-5'>相位</b>和<b class='flag-5'>幅度数据</b>

    CN0374 RF至位解决方案提供6 GHz信号的精密相位幅度数据

    图1中的电路可精确地将400 MHz至6 GHz RF输入信号转换为相应的数字幅度和数字相位。该信号链可实现0°到360°相位测量,900
    发表于 06-05 10:24 1次下载
    CN0374 <b class='flag-5'>RF</b>至位<b class='flag-5'>解决方案</b>可<b class='flag-5'>提供</b>6 GHz信号的精密<b class='flag-5'>相位</b>和<b class='flag-5'>幅度数据</b>

    RF至位解决方案的性能及应用分析

    图1中的电路可精确地将400 MHz至6 GHz RF输入信号转换为相应的数字幅度和数字相位。 该信号链可实现0°到360°相位测量,900
    的头像 发表于 06-29 16:22 2110次阅读
    <b class='flag-5'>RF</b>至位<b class='flag-5'>解决方案</b>的性能及应用<b class='flag-5'>分析</b>

    RF至位解决方案可为材料分析应用提供精密的相位幅度数据

    分析远程站点的材料时,无法把探针放进材料中,此时,高频收发器为准确量化材料的体积分数提供了一种可行的方法,而且不存在直接接触
    的头像 发表于 06-16 17:52 581次阅读
    <b class='flag-5'>RF</b>至位<b class='flag-5'>解决方案</b>可为<b class='flag-5'>材料</b><b class='flag-5'>分析</b>应用<b class='flag-5'>提供</b>精密的<b class='flag-5'>相位</b>和<b class='flag-5'>幅度数据</b>