0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI竞争加剧,但追赶Nvidia并非易事

Astroys 来源:Astroys 2023-06-14 15:08 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

AI市场追赶Nvidia绝非易事,但许多高科技行业的人都决心试水。芯片公司们正在领导这场竞争,超大规模数据中心、OEM和其他公司也紧随其后。他们面临的任务将无比艰巨。

十二年前,Nvidia在AI上大胆下注。现在,他们终于以历史性的估值收获了丰厚的回报。

上周,当黄仁勋在台湾的Computex展会上活动时,全球其它竞争对手都在急切地向投资者和客户保证他们进入或在AI市场扩大份额的决心。然而,竞争对于Nvidia来说并不陌生。

几周前,黄仁勋在与2024Q1财报会议时说:“我们非常关注竞争,我们一直在面对竞争。我们面临来自各个方向的竞争,包括初创公司、资金充足且创新的公司,他们遍布全球。我们也面临来自现有芯片公司的竞争。我们甚至还面临来自CSPs(cloud services providers)内部项目的竞争。”

竞赛真的开始了。

但竞争对手也需要接受一个残酷的现实。目前,Nvidia的领先地位如此之大,要想跨越它,需要巨大的跃进、灵活的步伐,还需要运气。这是因为搞AI并不是靠蛮力。它需要一套协调得天衣无缝的动作和部件,就像一部交响乐。

黄仁勋说:“这是我们所知道的最难的计算。你必须设计所有的硬件、库、算法,并优化框架,以适应不仅仅是一颗芯片,而是整个数据中心的架构。这是你的网络操作系统,你的分布式计算引擎,你对网络设备架构、交换机和计算系统的理解……整个系统就是你的计算机。”

总结就是,AI是非常复杂的。

竞争日益加剧

但竞争已经到来,且会持续下去。

AMD的Lisa Su几个月来一直明确表示,她的公司必须在AI业务中占据更大份额。Su在年初的CES上表示,AMD将利用其最新的处理器Ryzen,现在已被赋予AI功能。

上个月,Su在接受采访时表示,AMD正在“将AI融入我们产品组合的每一个方面”。

AMD并不孤单。Intel也想分一杯羹。AWS、Apple、百度、华为、IBM等公司也都是如此。

Nvidia清楚地意识到,包括其客户在内的许多公司都想在其领地上分一杯羹。作为回应,Nvidia一直在对其运营方式和对外展现的姿态方面进行深度改变。它正在与电子设计和供应链伙伴合作,而在某些情况下,甚至与自己的客户竞争。

Nvidia刚刚宣布与MTK合作,以便在汽车领域建立更大的立足点。Nvidia的汽车业务负责人Danny Shapiro指出,这项交易并不只针对MTK。他说,正在考虑在其他领域建立类似的合作伙伴关系。

Shapiro说:“这扩大了我们的商业模式。如果你看我们在汽车行业所做的,你可以在汽车中看到Nvidia的芯片和Nvidia的软件。你可以在云端看到Nvidia。无论你是否在汽车中使用我们的芯片和软件,基本上,每个公司都在用我们的数据中心业务进行训练。通过开辟我们之前没有进入的新细分市场,扩大了我们的市场。”

Nvidia抵御竞争压力最有效的工具是在芯片领域内外都有所行动,使其AI优势在哪里都能被利用。事实上,黄仁勋指出,该公司已经不能简单地被描述为一家芯片供应商。

不止于此。它既与芯片竞争对手、超大规模数据中心、软件开发商、云客户、OEM、公用事业、银行和金融企业、保险公司和汽车公司合作,又与他们竞争。这个名单还在继续。

黄仁勋指出,“我们已经建立了五个数据中心,我们还帮助全世界的公司建立数据中心。我们把数据中心和超级计算机变成了产品。全球一些最大的超级计算机在大约一年半前安装完毕,现在它们正在逐步投入使用。我们交付到运营的时间以周计。”

巨大的领先优势

Nvidia能否以及能多久保持其AI领头羊地位现在已成为价值数十亿美元的问题。

根据IDTechEx的数据,Nvidia是GPU市场无可争议的领导者,市场份额超过80%。该研究机构估计,到2033年,AI芯片市场“将达到2576亿美元”,以24.4%的复合年增长率增长,并表示Nvidia将占据“相当大的份额”。

IDTechEx的报告中说,“AI正在改变我们所熟知的世界。AI训练算法的复杂性正在以惊人的速度增长。为了跟上这个增长,我们需要的不仅是可扩展的AI应用硬件,还需要能在接近终端用户的地方处理越来越复杂的模型。”

Nvidia声称它已经找到了秘诀。目前,其在AI领域GPU的巨大领先优势无人能敌。

但竞争对手也意识到了市场的潜力,正在全力追赶。然而,要追上Nvidia远没有那么容易。甚至可以说,短期内近乎不可能,需要多年时间的努力。

以下是竞争对手们可能面临的挑战:

AI解决方案并不仅仅关乎最好的芯片、处理器、软件、工艺制程、交付机制或者可信赖的关系。它需要所有这些因素的组合,顺利叠加起来,形成坚固的统一体。

Nvidia完成以上任务花了超过12年的时间,要复制Nvidia已经完成且将继续进行的工作,竞争者需要以闪电般的速度进行追赶。

任何想要获得更大份额的竞争者,不只要有优秀的处理器(GPU或CPU)、优秀的软件应用和制程,而且要远超这些。

黄仁勋如此直言不讳地说,这是因为,企业AI用户和他们的终端客户看重的AI解决方案,需要的不仅仅是将最好的芯片和软件拼凑在一起的能力。这关乎“技术堆栈”和“总体拥有成本”。

他说:“如果数据中心的操作系统,即基础设施,不是极其出色,你如何连接成千上万的GPU?Nvidia的核心价值主张是我们是最低成本的解决方案。我们是最低总体拥有成本的解决方案。这是因为,我经常谈论的加速计算是两个问题,即它是一个全栈问题。”

诱人的回报

对于竞争者来说,开发一系列类似的解决方案是一项巨大挑战。但回报也可以同样巨大。

整个AI市场在2021年的估值还不到1,000亿美元。根据Next Move Strategy Consulting的数据,到今年年底,市场规模将膨胀到2,070亿美元,到2030年将达到2万亿美元的估值。

分析师并非是唯一抛出惊人数字的群体。正如Nvidia高企的市值所示,股权投资者也同样对AI投资的预期回报疯狂。

然而,竞争者们的战斗不仅仅是在AI芯片上。AI竞争已经扩大到了“客户”层面的因素,这些客户过去可能会满足于从芯片公司那里购买组件,或者从制造商那里购买完成的OEM设备。

而且,现在加入竞争队伍的还包括像Alphabet、Apple、Amazon和Facebook这样的超大规模数据中心、云服务供应商,甚至公用事业及自研芯片的通用视觉公司等。

成功非偶然

Nvidia的成功并非是偶然的。2011年,黄仁勋开始推动公司专注于“加速计算”,似乎是非常明智的决策。

事后回顾,Nvidia似乎一路都非常顺利。但上个月,黄仁勋在台湾发表演讲时指出,在开发CUDA(其计算平台和应用程序编程接口,使软件能够用于通用目的处理)时,Nvidia遇到过很多困难。

然而,他们坚持了下去,黄说是“冒着一切风险追求深度学习”。

他说,“我们发明了CUDA,开创了加速计算和AI。十年后,AI革命开始了,Nvidia是全球AI开发者的引擎。你要么为了食物而奔跑,要么为了避免成为食物而奔跑。往往你不能分辨是哪一个。只有跑。”

Nvidia在奔跑。竞争对手也在奔跑。

但想要在AI市场上赶上Nvidia,可能还需很多年艰辛的努力。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • NVIDIA
    +关注

    关注

    14

    文章

    5511

    浏览量

    109159
  • AI
    AI
    +关注

    关注

    90

    文章

    38303

    浏览量

    297388
  • 深度学习
    +关注

    关注

    73

    文章

    5591

    浏览量

    123971

原文标题:AI竞争加剧,但追赶Nvidia并非易事

文章出处:【微信号:Astroys,微信公众号:Astroys】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NVIDIA扩大与微软合作推动AI超级工厂建设

    在 Microsoft Ignite 大会上,NVIDIA 扩大与微软的合作,包括在由 NVIDIA Blackwell 平台驱动的全新 Microsoft Fairwater AI 超级工厂中部署新一代
    的头像 发表于 12-01 09:52 505次阅读

    MediaTek携手NVIDIA开启个人AI算力新纪元

    即将上市的 NVIDIA DGX Spark 个人 AI 超级计算机,搭载 MediaTek 与 NVIDIA 合作设计的 GB10 Grace Blackwell 超级芯片,NVIDIA
    的头像 发表于 10-16 11:26 522次阅读

    NVIDIA AI网络闪耀2025云栖大会

    2025 云栖大会于 9 月 24 日至 9 月 26 日举办,NVIDIA 作为大会巅峰合作伙伴参与 2025 云栖大会。本文将带您回顾 NVIDIA AI 网络在本届云栖大会上的精彩内容。
    的头像 发表于 10-13 11:19 844次阅读

    AI+新能源,共创多赢!易事特集团2025数字能源合作伙伴联席大会圆满举行

    近日,中原腹地郑州迎来了一场以“AI+新能源携手创未来”为主题的行业盛会——2025易事特数字能源合作伙伴联席大会。易事特集团数字能源核心团队继在北京成功举办合作伙伴大会之后,再度集结行业合作伙伴
    的头像 发表于 07-02 10:37 749次阅读
    <b class='flag-5'>AI</b>+新能源,共创多赢!<b class='flag-5'>易事</b>特集团2025数字能源合作伙伴联席大会圆满举行

    NVIDIA技术助力企业创建主权AI智能体

    AI Factory 的经验证设计将加速基础设施与软件(包括全新 NVIDIA NIM 微服务和经扩展的 NVIDIA Blueprint)相结合,为各国和企业简化了全栈式 AI 开发
    的头像 发表于 06-16 14:28 1118次阅读

    欧洲联手NVIDIA打造AI基础设施

    NVIDIA 于近日宣布,其正在携手欧洲各国、科技和行业领导者,共同建造 NVIDIA Blackwell AI 基础设施,以强化数字主权、支撑经济增长,并推动欧洲大陆成为 AI 工业
    的头像 发表于 06-16 14:25 1149次阅读

    英伟达GTC2025亮点:Oracle与NVIDIA合作助力企业加速代理式AI推理

    Oracle 数据库与 NVIDIA AI 相集成,使企业能够更轻松、快捷地采用代理式 AI Oracle 和 NVIDIA 宣布,NVIDIA
    的头像 发表于 03-21 12:01 1212次阅读
    英伟达GTC2025亮点:Oracle与<b class='flag-5'>NVIDIA</b>合作助力企业加速代理式<b class='flag-5'>AI</b>推理

    Oracle 与 NVIDIA 合作助力企业加速代理式 AI 推理

    Oracle 数据库与 NVIDIA AI 相集成,使企业能够更轻松、快捷地采用代理式 AI       美国加利福尼亚州圣何塞 —— GTC  —— 2025 年 3 月 18 日
    发表于 03-19 15:24 479次阅读
    Oracle 与 <b class='flag-5'>NVIDIA</b> 合作助力企业加速代理式 <b class='flag-5'>AI</b> 推理

    NVIDIA 发布保障代理式 AI 应用安全的 NIM 微服务

    NVIDIA NeMo Guardrails 包含全新 NVIDIA NIM 微服务,能够为各行业构建 AI 的企业提高 AI 的准确性、安全性和可控性。  
    发表于 01-17 16:29 287次阅读

    NVIDIA推出AI零售购物助手蓝图

    NVIDIA 于近日发布了用于零售购物助手的 NVIDIA AI Blueprint,这个生成式 AI 参考工作流旨在变革网购和实体店购物的体验。
    的头像 发表于 01-14 11:17 1041次阅读

    NVIDIA与合作伙伴推出代理式AI Blueprint

    开发者现在可以使用全新 NVIDIA AI Blueprint 构建和部署具备推理、规划和行动能力的定制化 AI 智能体。这些蓝图囊括了 NVIDIA NIM 微服务、
    的头像 发表于 01-09 11:08 1038次阅读

    NVIDIA推出面向RTX AI PC的AI基础模型

    NVIDIA 今日发布能在 NVIDIA RTX AI PC 本地运行的基础模型,为数字人、内容创作、生产力和开发提供强大助力。
    的头像 发表于 01-08 11:01 893次阅读

    NVIDIA推出多个生成式AI模型和蓝图

    NVIDIA 宣布推出多个生成式 AI 模型和蓝图,将 NVIDIA Omniverse 一体化进一步扩展至物理 AI 应用,如机器人、自动驾驶汽车和视觉
    的头像 发表于 01-08 10:48 1055次阅读

    NVIDIA和GeForce RTX GPU专为AI时代打造

    NVIDIA 和 GeForce RTX GPU 专为 AI 时代打造。
    的头像 发表于 01-06 10:45 1294次阅读

    企业AI模型部署攻略

    当下,越来越多的企业开始探索和实施AI模型,以提升业务效率和竞争力。然而,AI模型的部署并非易事,需要企业在多个层面进行细致的规划和准备。下面,AI
    的头像 发表于 12-23 10:31 1346次阅读