0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

滨松光通信用1550nm波段高效率光调制方案

jf_64961214 来源:jf_64961214 作者:jf_64961214 2023-05-30 07:03 次阅读


wKgZomR1LymAaSoeAAAkylJvOyM11.jpeg

在光通信的研究中,所涉及的波段除了可见光中的多个波长(如780nm)外,在红外波段,1550nm是最多被选择的。由于光纤中使用的玻璃材料的吸收特性,1550nm光在传输过程中能量损失是最小的,这样就能达成更远距离的光通信。除了对光本身性能的利用外,光通信还要求光路中的每一个元件,在保证功能的前提下,最大程度地控制光能损失。

wKgaomR1LymAD8IzAABOZnyUE0s93.jpeg

光通信研究典型光路示意

# 空间光调制器中的光能损失

想要光携带信息传输向远方,需要对其进行编码。空间光调制器(LCOS-SLM)就是可以通过相位调制来实现这一操作的元件。待编码的激光束穿过空间光调制器透明的玻璃基板层和ITO电极层,到达液晶层完成相位的调制(电压→液晶分子排列方向→折射率→光程→相位)后,经过反射面的反射进行输出。这时候的光,就已经是满载信息的了。

wKgZomR1LymAAhBBAABeLO-SORc27.jpeg

当然,作为光路中的其中一环,"高性能、低光能损失"也是光通信对空间光调制器提出的苛刻要求。光在空间光调制器的透明的玻璃基板层和ITO电极层其实损失都较小,而液晶层为主要的的工作层,调制带来的损耗难以避免。在这种情况下,提高反射面的反射率,便是控制元件整体光能损失的最有效方法。

目前空间光调制器反射层主要有两类:传统的铝制反射层和介质镜。

其中,后者的反射率是明显高于前者的。虽然在可见光波段高反射率介质镜已经得以应用,但受材料限制,适用于1550nm的介质镜始终是业界的技术瓶颈。因此,大部分针对此波长的空间光调制器,一直以来采用的都是传统材料(铝)的反射层,光利用率也只在80%左右。

# 1550nm处光利用率达98%的新型空间光调制器

滨松成功突破了材料和工艺难题,自主开发出了可应用于1500nm-1600nm波段的介质镜。利用此项独家的专利技术,研发了在1550nm附近超高光利用率(97%)的全新空间光调制。

wKgaomR1LyqAXyZmAACPokNA0Rg800.png

目前市面上1550nm附近各主要SLM产品的光利用率对比

除了1550nm高反射率外,滨松此款新型空间光调制器在上升和下降时间方面,较以往产品也有了明显的提升,灵敏度进一步改善。新品现在可以接受预定咨询,而针对光通信用可见光波段,滨松同样可以提供丰富的产品选择。

wKgZomR1LyqAZNuvAAAOgdNbKbU179.png

滨松1550nm高反射率空间光调制器基本参数一览

# 整体方案提供:InGaAs红外相机+空间光调制器

针对调制后的光斑观察和分析,滨松也可提供针对1550nm附近波段的高灵敏InGaAs红外相机,可搭配空间光调制器,应用于光通信研究中。

wKgaomR1LyqAIWDzAAD26DL34Qk540.png




审核编辑黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光通信
    +关注

    关注

    19

    文章

    776

    浏览量

    33658
  • 光调制器
    +关注

    关注

    0

    文章

    77

    浏览量

    8262
收藏 人收藏

    评论

    相关推荐

    单模光纤1550nm衰减为多少

    单模光纤是一种传输光信号的重要工具,其起到传输、扩展和调制光信号的作用。1550nm是单模光纤常用的工作波长之一,通过单模光纤传输信号时,会发生一定的衰减。本文将详细讨论单模光纤1550nm波长
    的头像 发表于 04-03 17:37 326次阅读

    见合八方1550nm高功率蝶形SOA产品应用介绍

    电子发烧友网站提供《见合八方1550nm高功率蝶形SOA产品应用介绍.pdf》资料免费下载
    发表于 12-19 16:10 0次下载

    无线激光通信是什么?它有哪些行业应用设计方案

    在无线激光通信中,激光束通过大气空间传输,可以覆盖较远的距离,同时具有较高的传输速率和较大的传输容量。无线激光通信是指利用激光束作为信道在空间(陆地或外太空)直接进行语音、数据、图像信息双向传送
    的头像 发表于 11-04 08:07 702次阅读
    无线激<b class='flag-5'>光通信</b>是什么?它有哪些行业应用设计<b class='flag-5'>方案</b>?

    光通信速度密码:调制与400G系统的关系

    光通信速度密码:光线路调制技术提升频谱利用率在交通系统中,道路上车辆的承载能力会影响整体运输力。
    发表于 10-25 11:10 122次阅读
    <b class='flag-5'>光通信</b>速度密码:<b class='flag-5'>调制</b>与400G系统的关系

    电力通信网中光通信的连接方式与光通信网的整体结构拓扑图

    电子发烧友网站提供《电力通信网中光通信的连接方式与光通信网的整体结构拓扑图.pdf》资料免费下载
    发表于 10-24 09:07 0次下载
    电力<b class='flag-5'>通信</b>网中<b class='flag-5'>光通信</b>的连接方式与<b class='flag-5'>光通信</b>网的整体结构拓扑图

    高效率、易管理的智能照明解决方案

    在智能建筑应用中,照明是建筑物的基础功能,除了通过智能照明控制以达到节省能源、提高效率的目标外,通过可见光通信(VLC)技术,还可以实现室内定位与数据传输的功能,同时提供了二合一的智能照明和联接方案。本文将为您介绍VLC技术的发
    的头像 发表于 08-16 10:57 437次阅读
    <b class='flag-5'>高效率</b>、易管理的智能照明解决<b class='flag-5'>方案</b>

    剖析光通信调制器技术

    强度调制、直接探测(IMDD)是中短距离光通信最常见的调制技术,其基本原理是把数字的0/1信息承载在光强度的变化上,常见的强度调制方式有DML、EML、MZ等。
    的头像 发表于 05-29 14:44 3507次阅读
    剖析<b class='flag-5'>光通信</b>的<b class='flag-5'>调制</b>器技术

    关于光通信的最强进阶科普

    众所周知,我们现在的整个通信网络,对于光通信技术有着极大的依赖。我们的骨干网、光纤宽带以及5G,都离不开光通信技术的支撑。
    发表于 05-19 10:08 770次阅读
    关于<b class='flag-5'>光通信</b>的最强进阶科普

    看得见的无线通信技术—可见光通信

    中的“0”,则可见光通信系统的调制深度决定了灯光的“明”“暗”状态变化的大小。可见光通信系统的通信速率则影响灯光的“明”“暗”状态变化的快慢。因为人眼有视觉残留,对于老式电感整流的日光
    发表于 05-17 15:21

    高速可见光通信的前沿研究进展

    技术面临的若干挑战,展望了未来的美好前景。   可见光通信是利用波长在380~790 nm范围内的可见光进行数据通信的无线传输技术。其优点包括:   1) 相比于传统无线
    发表于 05-17 15:14

    micro LED与LD点亮可见光通信

    新的无线通信方式这一问题,可见光通信技术应运而生。可见光通信是指采用可见光波段半导体光源作为通信信号发送端,利用灯光承载信号,通过
    发表于 05-17 15:01

    光通信和电通信/无线通信的区别

    光通信、电通信和无线通信都是信息传输的方式,它们之间的主要区别在于传输载体的不同。   光通信是利用光作为信息传输的载体,通过调制光的
    发表于 05-09 16:46 4520次阅读

    光通信和光纤通信的区别

    光通信和光纤通信都是基于光学传输原理的通信技术,它们之间的区别如下:   概念不同:光通信是指通过光信号进行通信传输的技术,它可以采用
    发表于 05-09 16:40 3738次阅读

    光通信技术应用 光通信的意义

    光通信是一种通信传输技术,利用光纤作为传输介质,将信息通过光信号在光纤中传输。光通信技术具有传输速度快、带宽大、抗干扰等优点,以及安全性高,广泛应用于各个领域,尤其是在宽带通信、互联网
    发表于 05-09 16:23 2373次阅读

    光通信的概念 光通信优点与不足

    光通信是以光波为载波的通信方式。增加光路带宽的方法有两种:一是提高光纤的单信道传输速率;二是增加单光纤中传输的波长数,即波分复用技术(WDM)。   光通信是指利用光电子学技术,通过光纤
    发表于 05-09 15:49 4980次阅读