0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

使用碳化硅基MOSFET提高功率转换效率

星星科技指导员 来源:wolfspeed 作者:wolfspeed 2023-05-24 10:15 次阅读

更高的功率要求、法规要求以及效率和EMI问题的标准正在推动电源对使用开关功率器件的需求,因为它们具有更高的效率和更宽的工作范围。同时,设计人员一直面临着降低成本和节省空间的压力。面对这些要求,我们需要的是传统硅(Si)基MOSFET的替代品。

碳化硅(SiC)已经成为一个明确的选择,因为它已经成熟并且是第三代。基于 SiC 的 FET 具有许多性能优势,特别是在效率、更高的可靠性、更少的热管理问题和更小的占位面积方面。这些适用于整个功率谱,不需要彻底改变设计技术,尽管它们可能需要一些调整。

本文简要比较了 Si 与 SiC,介绍了 Wolfspeed 的 SiC 器件示例,并展示了如何开始使用它们进行设计。

碳化硅与硅型场效应管

首先,重要的是要清楚技术和术语:基于SiC的FET是MOSFET,就像它们的硅前辈一样。从广义上讲,它们的内部物理结构相似,都是具有源极、漏极和栅极连接的三端子器件。

区别正如其名称所示:基于SiC的FET使用碳化硅作为其基础材料,而不是单独的硅。业内许多人将它们称为碳化硅器件,而省略了MOSFET部分。本文将它们称为碳化硅场效应管。

为什么使用SiC化合物作为材料?由于各种深层物理原因,SiC具有与硅显着不同的三个主要电气特性,每个特性都带来操作优势;还有其他更微妙的(图1)。

poYBAGRtcwqAGmgRAAFBRAP889Q654.png

图 1:SiC 的关键材料特性与 Si 和 GaN 固体材料之间的近似比较。与Si相比,SiC具有更高的临界击穿率,更高的导热性和更宽的带隙。

它们是:

更高的临界击穿电场电压约为每厘米2.8兆伏(Mvolts/cm),而0.3 Mvolts/cm,因此在给定的额定电压下工作可以使用更薄的层,从而大大降低导通电阻。

更高的导热性,可在横截面积内实现更高的电流密度。

半导体(和绝缘体)中价带顶部和导带底部之间的能量差(eV)更宽,导致高温下的漏电流较低。因此,SiC二极管和FET通常被称为宽带隙(WBG)器件

因此,近似而言,基于SiC的器件可以阻断比硅器件高十倍的电压,并且在25°C时,导通电阻为一半或更低时,开关速度可以提高约十倍。 同时,它们能够在 200°C 而不是 125°C 的更高温度下工作,从而简化了热设计和管理。

栅极驱动器对实现效益至关重要

功率器件在没有栅极驱动器的情况下无法工作,栅极驱动器将低电平数字控制信号转换为所需的电流和电压信号以及功率器件所需的时序(同时还针对大多数类型的外部故障提供一些保护)。对于SiC FET,驱动器必须包括附加功能才能提供以下功能:

将导通和开关损耗以及栅极损耗降至最低。这些损耗包括关断和导通能量、米勒效应和栅极驱动电流要求。关断能量是关断状态下栅极电阻和栅源电压的函数。为了减少这些电流,必须从栅极排出更多的电流。实现此目的的方法之一是驱动器在关断期间对栅极电压施加负偏置。同样,通过降低栅极电阻来降低导通能量。

尽量减少米勒效应及其负面影响,其中寄生电容在某些情况下和应用配置下可能会导致意外导通。这种米勒诱导的导通增加了反向恢复能量并增加了损耗。一种解决方案是驱动器具有所谓的米勒箝位保护功能,该功能在功率级切换期间控制驱动电流。

在适当的电压下提供所需的灌电流和拉电流。SiC 器件通常需要比硅 MOSFET 更高的正偏置栅极驱动(+20 V),以最大限度地降低损耗;它们可能还需要 -2 至 -6 V 之间的负 OFF 栅极电压。所需的栅极电流由基于栅极电荷 (Qg)、V DD、漏极电流 ID、栅源电压和栅极电阻的常规计算确定,通常约为几安培。该电流必须具有足够的灌电流和拉电流额定值,其压摆率必须与 SiC FET 的开关速度相称

对电路板和器件寄生效应(杂散电感和电容)进行建模并最小化,这些寄生效应会导致振荡、电压/电流过冲和误触发,而这些器件的开关速度较高时,这些寄生效应。硅MOSFET具有一个小的电流“尾部”,可用作阻尼器或缓冲器,以在一定程度上减少过冲和振铃。SiC MOSFET没有这个尾部,因此漏极电压过冲和振铃可能会更高并引起问题。要减少这些寄生效应,需要仔细注意布局问题,最大限度地减小导体长度,并将驱动器放置在尽可能靠近其功率器件的位置。即使是几厘米也会产生影响,因为这些杂散电感和电容的影响在SiC FET的较高开关速度下更为明显。减少振铃还有第二个好处,因为它减少了与器件驱动侧和负载侧高速开关相关的EMI的产生。

尽管驱动SiC MOSFET时涉及其他问题,但许多供应商都提供为此目的设计的标准IC,其属性与SiC器件的特定需求相匹配。请注意,在许多设计中,栅极驱动器和SiC FET必须与低压电路电气隔离。这可以通过使用标准元件的光学、脉冲变压器或电容隔离技术来实现。隔离首先是为了安全起见,以便在电路故障时保护用户免受高压的影响,其次是在许多 MOSFET 固有不接地的电路拓扑中,例如桥式配置。

新器件展示性能

第一个商用封装的SiC MOSEFT,CMF20120D,由Wolfspeed于2011年2015月推出(Wolfspeed是Wolfspeed的功率和RF部门;该名称于1200年宣布);碳化硅晶圆在几年前就已经上市。该器件的额定电压为 98 V/80 A,导通电阻为 25 mΩ(均为 247⁰C),采用 TO-2 封装。Wolfspeed 很快推出了第二代工艺,现在提供第三代 SiC MOSEFT 指定为 C3M 器件(图 3)。

pYYBAGRtcwSAAsmWAAHYWY0ZyhI991.png

图 2:Wolfspeed 第 2 代(左)和第三代(右)SiC 工艺结构的比较显示出适度的差异,但这些横截面并未显示出性能规格的最终改进。

例如,业界首个 900 伏 SiC MOSFET 平台的成员之一是 C3M0280090J。它针对高频电力电子应用进行了优化,包括可再生能源逆变器、电动汽车充电系统和三相工业电源(表 1)。

C3M0280090J
阻断电压 900 V
+25°C 时的额定电流 11.5 安培
+25°C 时的导通电阻 280 Ω
TO-263-7
闸机费用总计 9.5 纳克
最高结温 +150°C
反向恢复费用 (Qrr) 47 nC
反向恢复时间 (总时) 20 纳秒

表 1:Wolfspeed C3M0280090J SiC MOSFET 的顶级属性显示了其适用于可再生能源逆变器、电动汽车充电系统和三相工业电源。(表源:狼速)

除电压/电流规格外,该器件还针对低电容的高速开关进行了优化,具有带驱动器源极连接的低阻抗封装(图 3),包括一个具有低反向恢复电荷 (Qrr) 的快速本征二极管,漏极和源极之间的爬电距离很宽 (~7 mm (mm))。

poYBAGRtctGAKo_9AABMfcVMLgs803.png

图 3:Wolfspeed C3M0280090J 采用低阻抗封装,带有驱动器源连接。

这款 900 伏平台可实现更小、更高效的下一代电源转换系统,其成本与硅基解决方案相当,但规格优越。安全工作区 (SOA) 图总结了该 SiC FET 的功能(图 4)。当漏源电压(VDS)较低时,最大电流受导通电阻限制;在中等VDS下,该器件可在短时间内维持15 A电流。

pYYBAGRtcsqAMD9aAAGQcicBI2Y056.png

图 4:Wolfspeed C3M0280090J 的 SOA 图显示了其 I DS 与 VDS 功能。

包装影响性能

Wolfspeed 还提供三种规格相似的器件——C3M0075120D、C3M0075120K 和 C3M0075120J,但差异很大程度上是由于它们的封装(图 5)。

产品名称 C3M0075120D C3M0075120K C3M0074120J
块电压 1200 V 1200 V 1200 V
25°C 时的额定电流 30 安培 30 安培 30 安培
导通电阻 25°C 时的导通电阻 75毫微电阻 75毫微电阻 75毫微电阻
TO-247-3 TO-247-4 TO-263-7
闸机费用总计 54nC 51nC 51nC
最高结温 150°C 150°C 150°C
反向恢复费用 (Qrr) -- 220 nC 220 nC
输出电容 58p呋喃 58p呋喃 58p呋喃
反向恢复时间 (总时) 48 纳秒 18 纳秒 18 纳秒

图 5:Wolfspeed 在三种封装中提供相同的 1200 伏 SiC FET,规格大致相似但不完全相同。(图片来源:狼速)

虽然数字提供了事实,但故事还有更多。D 后缀器件采用三端子封装 (TO-247-3),而 K 后缀采用四端子封装 (TO-247-4)。这两款器件以及七端子 J 后缀器件包括一个开尔文源极引脚,可降低栅极电路中 L × di/dt 引起的电压尖峰的影响。这允许在栅极和源极施加更多电压,从而实现更快的动态切换。结果表明,当在接近其额定电流时测量器件时,开关损耗可能会降低3.5倍。

评估板、参考设计加速成功

尽管与千兆赫兹频率RF设计处于频谱的另一端,但创建在更高电压和功率范围内工作的高性能电路仍然需要注意细节。组件和布局的每一个微妙之处和特质都被放大了,物理电路对最小的问题和疏忽都是无情的。

为了帮助设计人员评估 C3M0075120D 和 C3M0075120K 等 SiC FET,Wolfspeed 提供了 KIT-CRD-3DD12P 降压-升压评估套件,以演示这些器件的高速开关性能。它设计用于接受 C3M0075120D 的三端子封装以及其他相同 C3M0075120K 的四端子封装。这使设计人员能够测试和比较 Wolfspeed 第 3 代 (C3M) MOSFET 在各种封装中的性能。

该评估套件采用半桥配置,允许在上下位置添加 MOSFET 或二极管,因此该板可以配置为常见的功率转换拓扑,如同步降压或同步升压。它还允许在顶部或底部位置添加二极管,因此用户可以评估异步降压或异步升压转换器拓扑。

此外,为了降低功率损耗,该套件还配备了一个由“sendust”组成的低损耗电感器。这种磁性金属粉末也称为Kool Mμ,由85%的铁,9%的硅和6%的铝组成,由于其改进了关键磁性和温度参数的规格,因此被用作坡莫合金的替代品。

对于需要设计自己的栅极驱动器子电路的用户,Wolfspeed 还为这些第三代 SiC FET 提供了 CGD15SG00D2 栅极驱动器参考设计(图 3)。

CGD8SG15D00的高级框图(图2)显示了该参考设计的功能,包括光耦合器(U1)、栅极驱动器集成电路(U2)和隔离电源(X1)。光耦合器(5000 V 交流隔离)接受脉宽调制 (PWM) 信号,并提供 35/50 kV/微秒 (μs)(最小值/典型值)的共模抗扰度。其他值得注意的功能包括:

一个凹槽,用于增强印刷电路逻辑侧和电源侧之间的规定爬电距离规格,以及电路板初级电路和次级电路之间的 9 mm 爬电距离增强槽。

2 W 隔离电源,支持在更高频率下运行较大的 MOSFET。

使用专用二极管分离栅极导通和关断电阻,允许用户自定义和优化导通和关断信号。

逻辑电源输入端的共模电感器可增强 EMI 抗扰度。

结论

与传统的硅MOSFET相比,Wolfspeed的第三代碳化硅MOSFET在功率开关应用的效率和热能力方面具有显著的性能优势。当与合适的驱动程序结合使用时,它们可为新兴和已建立的应用提供可靠、一致的性能。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • MOSFET
    +关注

    关注

    141

    文章

    6578

    浏览量

    210165
  • FET
    FET
    +关注

    关注

    3

    文章

    586

    浏览量

    62365
  • SiC
    SiC
    +关注

    关注

    28

    文章

    2445

    浏览量

    61418
收藏 人收藏

    评论

    相关推荐

    基于碳化硅MOSFET的20KW高效LLC谐振隔离DC/DC变换器方案研究

    桥电路,提高可靠性;由于拓扑简化,采用硅650V MOSFET的方案在每个开通时刻有两颗MOSFET同时导通,所以实际等效导通损耗会比采用全桥拓扑的1000V
    发表于 08-05 14:32

    碳化硅深层的特性

    。强氧化气体在1000℃以上与SiC反应,并分解SiC.水蒸气能促使碳化硅氧化在有50%的水蒸气的气氛中,能促进绿色碳化硅氧化从100℃开始,随着温度的提高,氧化程度愈为明显,到1400℃时为最大
    发表于 07-04 04:20

    【罗姆BD7682FJ-EVK-402试用体验连载】基于碳化硅功率器件的永磁同步电机先进驱动技术研究

    ,利用SiC MOSFET来作为永磁同步电机控制系统中的功率器件,可以降低驱动器损耗,提高开关频率,降低电流谐波和转矩脉动。本项目中三相逆变器拟打算使用贵公司的SiC MOSFET,验
    发表于 04-21 16:04

    如何用碳化硅MOSFET设计一个双向降压-升压转换器?

    碳化硅MOSFET设计一个双向降压-升压转换
    发表于 02-22 07:32

    电动汽车的全新碳化硅功率模块

    面向电动汽车的全新碳化硅功率模块 碳化硅在电动汽车应用中代表着更高的效率、更高的功率密度和更优的性能,特别是在800 V 电池系统和大电池容
    发表于 03-27 19:40

    传统的硅组件、碳化硅(Sic)和氮化镓(GaN)

    效率方面,相较于硅晶体管在单极(Unipolar)操作下无法支持高电压,碳化硅即便是在高电压条件下,一样可以支持单极操作,因此其功率损失、转换效率
    发表于 09-23 15:02

    降低碳化硅牵引逆变器的功率损耗和散热

    使用绝缘栅双极晶体管(IGBT)。但随着半导体技术的进步,碳化硅 (SiC) 金属氧化物半导体场效应晶体管 (MOSFET) 能够以比 IGBT 更高的频率进行开关,通过降低电阻和开关损耗来提高效率
    发表于 11-02 12:02

    功率模块中的完整碳化硅性能怎么样?

    0.5Ω,内部栅极电阻为0.5Ω。  功率模块的整体热性能也很重要。碳化硅芯片的功率密度高于硅器件。与具有相同标称电流的硅IGBT相比,SiC MOSFET通常表现出显着较低的开关损耗
    发表于 02-20 16:29

    归纳碳化硅功率器件封装的关键技术

    电子系统的效率功率密度朝着更高的方向前进。碳化硅器件的这些优良特性,需要通过封装与电路系统实现功率和信号的高效、高可靠连接,才能得到完美展现,而现有的传统封装技术应用于
    发表于 02-22 16:06

    应用于新能源汽车的碳化硅半桥MOSFET模块

    ,工作结温可达175℃,与传统硅模块具有相同的封装尺寸,可在一定程度上替代相同封装的IGBT模块,从而帮助客户有效缩短产品开发周期,提高工作效率。  产品特点  沟槽型、低RDS(on) 碳化硅
    发表于 02-27 11:55

    浅谈硅IGBT与碳化硅MOSFET驱动的区别

    小于5ns;  · 选用低传输延时,上升下降时间短的推挽芯片。  总之,相比于硅IGBT,碳化硅MOSFET在提升系统效率功率密度和工作温度的同时,对于驱动器也提出了更高要求,为了让
    发表于 02-27 16:03

    TO-247封装碳化硅MOSFET引入辅助源极管脚的必要性

    通损耗一直是功率半导体行业的不懈追求。  相较于传统的硅MOSFET和硅IGBT 产品,基于宽禁带碳化硅材料设计的碳化硅 MOSFET 具有
    发表于 02-27 16:14

    图腾柱无桥PFC中混合碳化硅分立器件的应用

    的硅IGBT和碳化硅肖特基二极管合封,在部分应用中可以替代传统的IGBT (硅IGBT与硅快恢复二极管合封),使得IGBT的开关损耗大幅降低。这款混合
    发表于 02-28 16:48

    在开关电源转换器中充分利用碳化硅器件的性能优势

    使碳化硅MOSFET技术在将功率转换效率推向更高极限的同时,在经济方面也更加切实可行。原作者:北京稳固得电子
    发表于 03-14 14:05

    碳化硅MOSFET什么意思

    碳化硅MOSFET什么意思 碳化硅MOSFET是一种新型的功率半导体器件,其中"MOSFET"表
    的头像 发表于 06-02 15:33 1268次阅读