0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

北理工马建军:CMOS硅基太赫兹成像技术

bzdlyqxsl 来源:信息与电子工程前沿FITE 2023-05-24 10:07 次阅读

太赫兹成像技术利用连续或脉冲太赫兹波作用于目标物,用太赫兹探测器接收透过物体或被物体表面反射的太赫兹波信号,获得目标各点透射或反射的太赫兹波强度和相位信息,通过频谱分析和数字信号处理实现目标成像。在电磁波谱中,太赫兹波位于微波红外波段之间,具有高透射性、低能量性、相干性、瞬态性等特点。这使得太赫兹成像技术具有传统成像技术(如可见光、超声波和 X 射线成像)无法比拟的优势,在国家安全、安全检查、生物医学以及环境监测等方面表现出广阔的应用前景。

传统太赫兹成像器件及系统的实现方式主要基于纯电子器件和纯光电两种。前者主要依赖于肖特基二极管和Ⅲ - Ⅴ族器件,后者主要依赖于光电导、光整流和量子级联激光器。这些设备在实际使用中成本高昂、体积庞大,有些甚至需要冷却设备辅助。此外,它们与传统的微电子封装不兼容,进一步增加了集成化难度。

近年来,随着硅基工艺的不断升级,其射频性能得到很大提升,基于硅基工艺实现的太赫兹成像技术引起国内外学者的研究兴趣。互补金属氧化物半导体(complementary metal oxidesemiconductor,CMOS)太赫兹成像技术具有小尺寸、低功耗等特点,能够满足高集成和低成本的太赫兹成像商用需求。CMOS 硅基太赫兹成像技术已经在分辨力方面取得了多项技术突破,康奈尔大学基于 55 nm BiCMOS(双极互补型金属氧化物半导体)工艺研制出具有 2 mm 横向分辨力和 2.7 mm距离分辨力的 220 GHz 成像系统。但如何突破衍射极限,进一步提升成像分辨力,依然是重要的研究方向。此外,针对硅基工艺在太赫兹频段的复杂寄生和耦合效应、太‍赫兹集成电路分布效应以及太赫兹源同步技术的研究,也是该领域的研究重点。

针对 CMOS 硅基太赫兹成像技术的研究情况分析如表 1.2.9 所示。美国、德国和中国在核心论文数量方面位居世界前三名,但在论文被引频次方面,中国下滑至第五名,被日本和法国赶超。表 1.2.10展示了对该工程研究沿中核心论文主要产出机构的分析:在核心论文数量方面,伍珀塔尔大学和维尔纽斯大学位居前列,中国只有南京大学排进前十。在论文被引频次方面,普林斯顿大学、伍珀塔尔大学和密歇根大学进入前三,南京大学论文被引频次位居末位。

332f1d06-f9d7-11ed-90ce-dac502259ad0.png

在国家间的合作网络(图 1.2.7)方面,中国的主要合作伙伴为美国;德国与欧洲、美洲和亚洲地区国家建立了广泛的合作关系。在机构间的合作网络(图 1.2.8)方面,欧洲大陆的立陶宛约纳斯·泽梅蒂斯军事学院、维尔纽斯大学和波兰科学院高压物理研究所建立了稳定的合作关系,美国的康奈尔大学分别与加利福尼亚大学洛杉矶分校、密歇根大学建立了合作关系。

335f94d6-f9d7-11ed-90ce-dac502259ad0.png

表 1.2.11 所示为该前沿中施引核心论文的主要产出国家。中国占比超过三分之一,位居世界第一,美国和德国分别位列第二、第三名。在表 1.2.12 所示施引核心论文的主要产出机构排行榜中,中国占据绝对优势,有 7 家中国机构位列世界前十,另外 2 家为美国机构、1 家为德国机构。

33878220-f9d7-11ed-90ce-dac502259ad0.png

CMOS 硅基太赫兹成像技术的研究主要集中在高灵敏度、高集成度和高分辨力三个方面。最初的成像技术采用非相干的直接检测技术,但其灵敏度低、输入功率要求大,对固态电子产品也极具挑战性。0.13 μm SiGe BiCMOS(锗化硅双极互补金属氧化物半导体)工艺相干成像收发器芯片的提出,将灵敏度提升 10 倍以上。为实现更高的分辨力成像,基于相干成像的阵列规模也逐渐扩大。但传统的相干检测阵列中的本振信号大多采用中心化设计,很不利于阵列规模的扩大。基于 65 nm CMOS工艺的 32 单元锁相密集外差接收阵列,可允许 2个交错的 4×4 阵列芯片在1.2 mm2的芯片范围内集成,使得整个接收机阵列更加紧凑。在成像横向分辨力提升方面,基于 55 nm BiCMOS 工艺的完全集成超宽带逆合成孔径成像技术可实现 2 mm 的横向分辨力和 2.7 mm 的距离分辨力。

迄今为止,太赫兹成像分辨力取得了多项技术突破,但硅集成太赫兹成像器的分辨力一直受到衍射极限的限制,只能达到毫米范围的光斑尺寸。生物医学或材料表征中的许多应用需达到微米级分辨力,这可以通过从远场到近场成像来实现,并可实现 10~12 μm 范围的横向分辨力。在低成本和高集成度的市场化需求下,基于CMOS 硅基的太赫兹成像研究在过去 10 年逐渐成为热点,并取得飞速进步,产生了大量研究成果并推动太赫兹成像技术的发展。

随着工艺的持续进步,太赫兹成像技术逐渐向高集成度、高精确度、大阵列等方向发展,但同时也面临着三大挑战:

1)在不断提高的工作频率条件下,有源器件模型的有效性和无源器件的损耗逐渐制约了硅基工艺太赫兹电路的快速发展。同时,硅基工艺多层金属和多层介质的特点使得各个器件在太赫兹频段产生非常复杂的寄生、耦合效应,大大增加了太赫兹电路的设计难度。

2)太赫兹频段波长短,有利于系统的集成。但太赫兹电路容易产生分布效应,也更容易受到表面粗糙度的影响,因此需要根据创新封装和互联技术实现系统的集成。

3)为了实现较高的角度分辨力,当从单个通道到阵列芯片的扩展时,需要保证多通道的协同工作,因此对源同步的技术提出了更高的要求。为了保证探测和信号传递的准确性,需要更复杂的校准系统来协同工作。

BCC Research 预测,2029 年全球主流太赫兹技术的市场规模可达 35 亿美元。其中不包括硅基集成电路行业带来的市场份额,主要原因在于CMOS 硅基太赫兹技术的发展与成熟化相对滞后。图 1.2.9 所示为该前沿的发展路线。到 2029 年左右,将可实现芯片制作并启动相关在片测试;到 2032年方可完成技术优化和集成研究,并实现芯片尺寸和分辨力的突破。可以预见,在未来 10 年,利用CMOS 硅基实现太赫兹技术的集成化将推动太赫兹成像技术迈向更大的市场规模。

33b9a818-f9d7-11ed-90ce-dac502259ad0.png

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 成像技术
    +关注

    关注

    4

    文章

    264

    浏览量

    31288
  • 成像系统
    +关注

    关注

    2

    文章

    174

    浏览量

    13795
  • 太赫兹
    +关注

    关注

    10

    文章

    327

    浏览量

    28830

原文标题:北理工马建军:CMOS硅基太赫兹成像技术|2022重点研究前沿

文章出处:【微信号:信息与电子工程前沿FITEE,微信公众号:信息与电子工程前沿FITEE】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    北理工电协简介

    协会简介 湖北理工学院电子技术协会是由湖北理工学院院团委审批,直属湖北理工学院电气与电子信息工程学院的一个校级性社团。“创新思维,发展科技”是ET同盟努力的宗旨,“传承
    发表于 11-05 18:04

    赫兹射线在反恐安全检查领域的应用

    探测,这种依靠飞秒激光技术发展起来的新技术,正在对未来的生活、着装和安防产生巨大的影响。赫兹光谱研究成像
    发表于 05-28 07:00

    如何解析赫兹波?

    赫兹(THz)波是介于微波和红外之间的一种相干电磁辐射,是人类目前尚未完全开发的电磁波谱“空隙区”。由于其频率范围处于电子学和光子学的交叉区域,赫兹波的理论研究处在经典理论和量子跃
    发表于 05-29 07:33

    浅析赫兹技术应用

    。在微波、可见光、红外等技术被广泛应用的情况下,赫兹发展滞后的主要原因在于缺少探测器和发射源,直到近十几年,随着科研手段的提高,人们在这一领域的研究才有了较大发展。
    发表于 07-03 07:57

    赫兹高速通信系统的基础研究介绍

    摘要:对构成赫兹无线系统的2 种关键电路(分谐波混频器和二倍频器)进行了深入研究。在关键电路研究取得突破的基础上,开展了赫兹无线通信技术
    发表于 07-10 07:53

    赫兹波段信号检测方法

    吴培亨陈健南京大学超导电子学研究所 为了检测赫兹波段的超短脉冲,目前大多采用光导取样或自由空间电光取样的方法;而对于赫兹波段连续信号的检测,则有多种方案可用,应根据灵敏度方面的要求
    发表于 07-29 07:28

    超强赫兹辐射是怎么产生的?

    赫兹辐射(THz)在材料光谱分析、断层摄影成像、生物材料表征等方面有广泛的应用前景。THz成像技术和应用中辐射源的产生和检测
    发表于 08-05 08:22

    赫兹波有什么特点?

    赫兹波现象其实早已为人们所发现,然而早期因缺乏有效的赫兹波产生和探测技术,使得相关研究进展极其缓慢。进入20世纪80年代后,激光
    发表于 10-28 09:11

    (脑控技术丛书)赫兹科学技术和应用

    (脑控技术丛书)赫兹科学技术和应用
    发表于 03-03 13:21

    (脑控技术丛书)赫兹科学技术和应用

    (脑控技术丛书)赫兹科学技术和应用
    发表于 03-06 08:02

    什么是赫兹技术赫兹技术的相关应用有哪些?

    什么是赫兹技术赫兹技术的相关应用有哪些?我国
    发表于 06-18 09:28

    北理工和赛灵思携手打造高性能网络技术实验室

    北理工和赛灵思携手打造高性能网络技术实验室 “北京理工大学和美国赛灵思公司高性能网络技术实验室成立暨揭牌仪式”最近在北京理工大学(
    发表于 12-03 08:43 683次阅读

    虹科分享 | 带您了解太赫兹成像技术及系统方案(上)

    应用。图1太赫兹波在电磁谱中的位置本次分享分为上下篇,主要介绍太赫兹成像技术的分类与特点,特别关注连续太赫兹
    的头像 发表于 09-26 09:58 468次阅读
    虹科分享 | 带您了解太<b class='flag-5'>赫兹</b><b class='flag-5'>成像</b><b class='flag-5'>技术</b>及系统方案(上)

    虹科分享 | 带您了解太赫兹成像技术及系统方案(下)

    点击蓝字关注我们上篇我们介绍了太赫兹成像技术的优势、太赫兹成像技术的分类与特点(太
    的头像 发表于 09-30 09:44 704次阅读
    虹科分享 | 带您了解太<b class='flag-5'>赫兹</b><b class='flag-5'>成像</b><b class='flag-5'>技术</b>及系统方案(下)

    虹科分享 | 带您了解太赫兹成像技术及系统方案

    波在电磁谱中的位置本次分享分为上下篇,主要介绍太赫兹成像技术的分类与特点,特别关注连续太赫兹成像技术
    的头像 发表于 09-30 14:57 638次阅读
    虹科分享 | 带您了解太<b class='flag-5'>赫兹</b><b class='flag-5'>成像</b><b class='flag-5'>技术</b>及系统方案