0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Linux 性能优化总结!1

jf_78858299 来源:Linux技术迷 作者:Linux技术迷 2023-05-12 15:16 次阅读

性能优化

性能指标

高并发和响应快对应着性能优化的两个核心指标:吞吐和延时

图片

  • 应用负载角度:直接影响了产品终端的用户体验
  • 系统资源角度:资源使用率、饱和度等

性能问题的本质就是系统资源已经到达瓶颈,但请求的处理还不够快,无法支撑更多的请求。性能分析实际上就是找出应用或系统的瓶颈,设法去避免或缓解它们。

  • 选择指标评估应用程序和系统性能
  • 为应用程序和系统设置性能目标
  • 进行性能基准测试
  • 性能分析定位瓶颈
  • 性能监控和告警

对于不同的性能问题要选取不同的性能分析工具。下面是常用的Linux Performance Tools以及对应分析的性能问题类型。

图片

到底应该怎么理解”平均负载”

平均负载 :单位时间内,系统处于可运行状态和不可中断状态的平均进程数,也就是平均活跃进程数。它和我们传统意义上理解的CPU使用率并没有直接关系。

其中不可中断进程是正处于内核态关键流程中的进程(如常见的等待设备的I/O响应)。不可中断状态实际上是系统对进程和硬件设备的一种保护机制。

平均负载多少时合理

实际生产环境中将系统的平均负载监控起来,根据历史数据判断负载的变化趋势。当负载存在明显升高趋势时,及时进行分析和调查。当然也可以当设置阈值(如当平均负载高于CPU数量的70%时)

现实工作中我们会经常混淆平均负载和CPU使用率的概念,其实两者并不完全对等:

  • CPU 密集型进程,大量 CPU 使用会导致平均负载升高,此时两者一致
  • I/O 密集型进程,等待 I/O 也会导致平均负载升高,此时 CPU 使用率并不一定高
  • 大量等待 CPU 的进程调度会导致平均负载升高,此时 CPU 使用率也会比较高

平均负载高时可能是 CPU 密集型进程导致,也可能是 I/O 繁忙导致。具体分析时可以结合 mpstat/pidstat 工具辅助分析负载来源。

CPU

CPU上下文切换(上)

CPU 上下文切换,就是把前一个任务的 CPU 上下文(CPU 寄存器和 PC)保存起来,然后加载新任务的上下文到这些寄存器和程序计数器,最后再跳转到程序计数器所指的位置,运行新任务。其中,保存下来的上下文会存储在系统内核中,待任务重新调度执行时再加载,保证原来的任务状态不受影响。

按照任务类型,CPU 上下文切换分为:

  • 进程上下文切换
  • 线程上下文切换
  • 中断上下文切换
进程上下文切换

Linux 进程按照等级权限将进程的运行空间分为内核空间和用户空间。从用户态向内核态转变时需要通过系统调用来完成。

一次系统调用过程其实进行了两次 CPU 上下文切换:

  • CPU 寄存器中用户态的指令位置先保存起来,CPU 寄存器更新为内核态指令的位置,跳转到内核态运行内核任务;
  • 系统调用结束后,CPU 寄存器恢复原来保存的用户态数据,再切换到用户空间继续运行。

系统调用过程中并不会涉及虚拟内存等进程用户态资源,也不会切换进程。和传统意义上的进程上下文切换不同。因此系统调用通常称为特权模式切换。

进程是由内核管理和调度的,进程上下文切换只能发生在内核态。因此相比系统调用来说,在保存当前进程的内核状态和CPU寄存器之前,需要先把该进程的虚拟内存,栈保存下来。再加载新进程的内核态后,还要刷新进程的虚拟内存和用户栈。

进程只有在调度到CPU上运行时才需要切换上下文,有以下几种场景:CPU时间片轮流分配,系统资源不足导致进程挂起,进程通过sleep函数主动挂起,高优先级进程抢占时间片,硬件中断时CPU上的进程被挂起转而执行内核中的中断服务。

线程上下文切换

线程上下文切换分为两种:

  • 前后线程同属于一个进程,切换时虚拟内存资源不变,只需要切换线程的私有数据,寄存器等;
  • 前后线程属于不同进程,与进程上下文切换相同。

同进程的线程切换消耗资源较少,这也是多线程的优势。

中断上下文切换

中断上下文切换并不涉及到进程的用户态,因此中断上下文只包括内核态中断服务程序执行所必须的状态(CPU寄存器,内核堆栈,硬件中断参数等)。

中断处理优先级比进程高,所以中断上下文切换和进程上下文切换不会同时发生

CPU上下文切换(下)

通过 vmstat 可以查看系统总体的上下文切换情况

vmstat 5         #每隔5s输出一组数据procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu----- r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st 1  0      0 103388 145412 511056    0    0    18    60    1    1  2  1 96  0  0 0  0      0 103388 145412 511076    0    0     0     2  450 1176  1  1 99  0  0 0  0      0 103388 145412 511076    0    0     0     8  429 1135  1  1 98  0  0 0  0      0 103388 145412 511076    0    0     0     0  431 1132  1  1 98  0  0 0  0      0 103388 145412 511076    0    0     0    10  467 1195  1  1 98  0  0 1  0      0 103388 145412 511076    0    0     0     2  426 1139  1  0 99  0  0 4  0      0  95184 145412 511108    0    0     0    74  500 1228  4  1 94  0  0 0  0      0 103512 145416 511076    0    0     0   455  723 1573 12  3 83  2  0
  • cs (context switch) 每秒上下文切换次数
  • in (interrupt) 每秒中断次数
  • r (runnning or runnable)就绪队列的长度,正在运行和等待CPU的进程数
  • b (Blocked) 处于不可中断睡眠状态的进程数

要查看每个进程的详细情况,需要使用pidstat来查看每个进程上下文切换情况

pidstat -w 5145116秒   UID       PID   cswch/s nvcswch/s  Command1451210         1      0.80      0.00  systemd1451210         6      1.40      0.00  ksoftirqd/01451210         9     32.67      0.00  rcu_sched1451210        11      0.40      0.00  watchdog/01451210        32      0.20      0.00  khugepaged1451210       271      0.20      0.00  jbd2/vda1-81451210      1332      0.20      0.00  argusagent1451210      5265     10.02      0.00  AliSecGuard1451210      7439      7.82      0.00  kworker/0:21451210      7906      0.20      0.00  pidstat1451210      8346      0.20      0.00  sshd1451210     20654      9.82      0.00  AliYunDun1451210     25766      0.20      0.00  kworker/u2:11451210     28603      1.00      0.00  python3
  • cswch 每秒自愿上下文切换次数(进程无法获取所需资源导致的上下文切换)
  • nvcswch 每秒非自愿上下文切换次数(时间片轮流等系统强制调度)
vmstat 1 1    #新终端观察上下文切换情况此时发现cs数据明显升高,同时观察其他指标:r列:远超系统CPU个数,说明存在大量CPU竞争us和sy列:sy列占比80%,说明CPU主要被内核占用in列:中断次数明显上升,说明中断处理也是潜在问题

说明运行/等待CPU的进程过多,导致大量的上下文切换,上下文切换导致系统的CPU占用率高

pidstat -w -u 1  #查看到底哪个进程导致的问题

从结果中看出是 sysbench 导致 CPU 使用率过高,但是 pidstat 输出的上下文次数加起来也并不多。分析 sysbench 模拟的是线程的切换,因此需要在 pidstat 后加 -t 参数查看线程指标。

另外对于中断次数过多,我们可以通过 /proc/interrupts 文件读取

watch -d cat /proc/interrupts

发现次数变化速度最快的是重调度中断(RES),该中断用来唤醒空闲状态的CPU来调度新的任务运行。分析还是因为过多任务的调度问题,和上下文切换分析一致。

某个应用的CPU使用率达到100%,怎么办?

Linux作为多任务操作系统,将CPU时间划分为很短的时间片,通过调度器轮流分配给各个任务使用。为了维护CPU时间,Linux通过事先定义的节拍率,触发时间中断,并使用全局变了jiffies记录开机以来的节拍数。时间中断发生一次该值+1.

CPU使用率,除了空闲时间以外的其他时间占总CPU时间的百分比。可以通过/proc/stat中的数据来计算出CPU使用率。因为/proc/stat时开机以来的节拍数累加值,计算出来的是开机以来的平均CPU使用率,一般意义不大。可以间隔取一段时间的两次值作差来计算该段时间内的平均CPU使用率。性能分析工具给出的都是间隔一段时间的平均CPU使用率,要注意间隔时间的设置。

CPU使用率可以通过top 或 ps来查看。分析进程的CPU问题可以通过perf,它以性能事件采样为基础,不仅可以分析系统的各种事件和内核性能,还可以用来分析指定应用程序的性能问题。

perf top / perf record / perf report (-g 开启调用关系的采样)

sudo docker run --name nginx -p 10000:80 -itd feisky/nginxsudo docker run --name phpfpm -itd --network container:nginx feisky/php-fpm
ab -c 10 -n 100 http://XXX.XXX.XXX.XXX:10000/ #测试Nginx服务性能

发现此时每秒可承受请求给长少,此时将测试的请求数从100增加到10000。在另外一个终端运行top查看每个CPU的使用率。发现系统中几个php-fpm进程导致CPU使用率骤升。

接着用perf来分析具体是php-fpm中哪个函数导致该问题。

perf top -g -p XXXX #对某一个php-fpm进程进行分析

发现其中 sqrt 和 add_function 占用 CPU 过多, 此时查看源码找到原来是sqrt中在发布前没有删除测试代码段,存在一个百万次的循环导致。将该无用代码删除后发现nginx负载能力明显提升

系统的CPU使用率很高,为什么找不到高CPU的应用?

sudo docker run --name nginx -p 10000:80 -itd feisky/nginx:spsudo docker run --name phpfpm -itd --network container:nginx feisky/php-fpm:spab -c 100 -n 1000 http://XXX.XXX.XXX.XXX:10000/ #并发100个请求测试

实验结果中每秒请求数依旧不高,我们将并发请求数降为5后,nginx负载能力依旧很低。

此时用top和pidstat发现系统CPU使用率过高,但是并没有发现CPU使用率高的进程。

出现这种情况一般时我们分析时遗漏的什么信息,重新运行top命令并观察一会。发现就绪队列中处于Running状态的进行过多,超过了我们的并发请求次数5. 再仔细查看进程运行数据,发现nginx和php-fpm都处于sleep状态,真正处于运行的却是几个stress进程。

下一步就利用pidstat分析这几个stress进程,发现没有任何输出。用ps aux交叉验证发现依旧不存在该进程。说明不是工具的问题。再top查看发现stress进程的进程号变化了,此时有可能时以下两种原因导致:

  • 进程不停的崩溃重启(如段错误/配置错误等),此时进程退出后可能又被监控系统重启;
  • 短时进程导致,即其他应用内部通过 exec 调用的外面命令,这些命令一般只运行很短时间就结束,很难用top这种间隔较长的工具来发现

可以通过pstree来查找 stress 的父进程,找出调用关系。

pstree | grep stress

发现是php-fpm调用的该子进程,此时去查看源码可以看出每个请求都会调用一个stress命令来模拟I/O压力。之前top显示的结果是CPU使用率升高,是否真的是由该stress命令导致的,还需要继续分析。代码中给每个请求加了verbose=1的参数后可以查看stress命令的输出,在中断测试该命令结果显示stress命令运行时存在因权限问题导致的文件创建失败的bug。

此时依旧只是猜测,下一步继续通过perf工具来分析。性能报告显示确实时stress占用了大量的CPU,通过修复权限问题来优化解决即可。

系统中出现大量不可中断进程和僵尸进程怎么办?

进程状态

R Running/Runnable,表示进程在CPU的就绪队列中,正在运行或者等待运行;

D Disk Sleep,不可中断状态睡眠,一般表示进程正在跟硬件交互,并且交互过程中不允许被其他进程中断;

Z Zombie,僵尸进程,表示进程实际上已经结束,但是父进程还没有回收它的资源;

S Interruptible Sleep,可中断睡眠状态,表示进程因为等待某个事件而被系统挂起,当等待事件发生则会被唤醒并进入R状态;

I Idle,空闲状态,用在不可中断睡眠的内核线程上。该状态不会导致平均负载升高;

T Stop/Traced,表示进程处于暂停或跟踪状态(SIGSTOP/SIGCONT, GDB调试);

X Dead,进程已经消亡,不会在top/ps中看到。

对于不可中断状态,一般都是在很短时间内结束,可忽略。但是如果系统或硬件发生故障,进程可能会保持不可中断状态很久,甚至系统中出现大量不可中断状态,此时需注意是否出现了I/O性能问题。

僵尸进程一般多进程应用容易遇到,父进程来不及处理子进程状态时子进程就提前退出,此时子进程就变成了僵尸进程。大量的僵尸进程会用尽PID进程号,导致新进程无法建立。

磁盘O_DIRECT问题

sudo docker run --privileged --name=app -itd feisky/app:iowaitps aux | grep '/app'

可以看到此时有多个app进程运行,状态分别时Ss+和D+。其中后面s表示进程是一个会话的领导进程,+号表示前台进程组。

其中进程组表示一组相互关联的进程,子进程是父进程所在组的组员。会话指共享同一个控制终端的一个或多个进程组。

用top查看系统资源发现:1)平均负载在逐渐增加,且1分钟内平均负载达到了CPU个数,说明系统可能已经有了性能瓶颈;2)僵尸进程比较多且在不停增加;3)us和sys CPU使用率都不高,iowait却比较高;4)每个进程CPU使用率也不高,但有两个进程处于D状态,可能在等待IO。

分析目前数据可知:iowait过高导致系统平均负载升高,僵尸进程不断增长说明有程序没能正确清理子进程资源。

用dstat来分析,因为它可以同时查看CPU和I/O两种资源的使用情况,便于对比分析。

dstat 1 10    #间隔1秒输出10组数据

可以看到当wai(iowait)升高时磁盘请求read都会很大,说明iowait的升高和磁盘的读请求有关。接下来分析到底时哪个进程在读磁盘。

之前 Top 查看的处于 D 状态的进程号,用 pidstat -d -p XXX 展示进程的 I/O 统计数据。发现处于 D 状态的进程都没有任何读写操作。在用 pidstat -d 查看所有进程的 I/O统计数据,看到 app 进程在进行磁盘读操作,每秒读取 32MB 的数据。进程访问磁盘必须使用系统调用处于内核态,接下来重点就是找到app进程的系统调用。

sudo strace -p XXX #对app进程调用进行跟踪

报错没有权限,因为已经时 root 权限了。所以遇到这种情况,首先要检查进程状态是否正常。ps 命令查找该进程已经处于Z状态,即僵尸进程。

这种情况下top pidstat之类的工具无法给出更多的信息,此时像第5篇一样,用 perf record -dperf report 进行分析,查看app进程调用栈。

看到 app 确实在通过系统调用 sys_read() 读取数据,并且从 new_sync_readblkdev_direct_IO看出进程时进行直接读操作,请求直接从磁盘读,没有通过缓存导致iowait升高。

通过层层分析后,root cause 是 app 内部进行了磁盘的直接I/O。然后定位到具体代码位置进行优化即可。

僵尸进程

上述优化后 iowait 显著下降,但是僵尸进程数量仍旧在增加。首先要定位僵尸进程的父进程,通过pstree -aps XXX,打印出该僵尸进程的调用树,发现父进程就是app进程。

查看app代码,看看子进程结束的处理是否正确(是否调用wait()/waitpid(),有没有注册SIGCHILD信号的处理函数等)。

碰到iowait升高时,先用dstat pidstat等工具确认是否存在磁盘I/O问题,再找是哪些进程导致I/O,不能用strace直接分析进程调用时可以通过perf工具分析。

对于僵尸问题,用pstree找到父进程,然后看源码检查子进程结束的处理逻辑即可。

CPU性能指标

  • CPU使用率
    • 用户CPU使用率, 包括用户态(user)和低优先级用户态(nice). 该指标过高说明应用程序比较繁忙.
    • 系统CPU使用率, CPU在内核态运行的时间百分比(不含中断). 该指标高说明内核比较繁忙.
    • 等待I/O的CPU使用率, iowait, 该指标高说明系统与硬件设备I/O交互时间比较长.
    • 软/硬中断CPU使用率, 该指标高说明系统中发生大量中断.
    • steal CPU / guest CPU, 表示虚拟机占用的CPU百分比.
  • 平均负载
    • 理想情况下平均负载等于逻辑CPU个数,表示每个CPU都被充分利用. 若大于则说明系统负载较重.
  • 进程上下文切换
    • 包括无法获取资源的自愿切换和系统强制调度时的非自愿切换. 上下文切换本身是保证Linux正常运行的一项核心功能. 过多的切换则会将原本运行进程的CPU时间消耗在寄存器,内核占及虚拟内存等数据保存和恢复上
  • CPU缓存命中率
    • CPU缓存的复用情况,命中率越高性能越好. 其中L1/L2常用在单核,L3则用在多核中

性能工具

  • 平均负载案例
    • 先用uptime查看系统平均负载
    • 判断负载在升高后再用mpstat和pidstat分别查看每个CPU和每个进程CPU使用情况.找出导致平均负载较高的进程.
  • 上下文切换案例
    • 先用vmstat查看系统上下文切换和中断次数
    • 再用pidstat观察进程的自愿和非自愿上下文切换情况
    • 最后通过pidstat观察线程的上下文切换情况
  • 进程CPU使用率高案例
    • 先用top查看系统和进程的CPU使用情况,定位到进程
    • 再用perf top观察进程调用链,定位到具体函数
  • 系统CPU使用率高案例
    • 先用top查看系统和进程的CPU使用情况,top/pidstat都无法找到CPU使用率高的进程
    • 重新审视top输出
    • 从CPU使用率不高,但是处于Running状态的进程入手
    • perf record/report发现短时进程导致 (execsnoop工具)
  • 不可中断和僵尸进程案例
    • 先用top观察iowait升高,发现大量不可中断和僵尸进程
    • strace无法跟踪进程系统调用
    • perf分析调用链发现根源来自磁盘直接I/O
  • 软中断案例
    • top观察系统软中断CPU使用率高
    • 查看/proc/softirqs找到变化速率较快的几种软中断
    • sar命令发现是网络小包问题
    • tcpdump找出网络帧的类型和来源,确定SYN FLOOD攻击导致

根据不同的性能指标来找合适的工具:

图片

先运行几个支持指标较多的工具,如 top/vmstat/pidstat,根据它们的输出可以得出是哪种类型的性能问题。定位到进程后再用 strace/perf 分析调用情况进一步分析。如果是软中断导致用 /proc/softirqs

图片

CPU优化

  • 应用程序优化
    • 编译器优化:编译阶段开启优化选项,如gcc -O2
    • 算法优化
    • 异步处理:避免程序因为等待某个资源而一直阻塞,提升程序的并发处理能力。(将轮询替换为事件通知)
    • 多线程代替多进程:减少上下文切换成本
    • 善用缓存:加快程序处理速度
  • 系统优化
    • CPU绑定:将进程绑定要1个/多个CPU上,提高CPU缓存命中率,减少CPU调度带来的上下文切换
    • CPU独占:CPU亲和性机制来分配进程
    • 优先级调整:使用nice适当降低非核心应用的优先级
    • 为进程设置资源显示: cgroups设置使用上限,防止由某个应用自身问题耗尽系统资源
    • NUMA优化: CPU尽可能访问本地内存
    • 中断负载均衡: irpbalance,将中断处理过程自动负载均衡到各个CPU上
  • TPS、QPS、系统吞吐量的区别和理解
    • QPS(TPS)

    • 并发数

    • 响应时间

    • QPS(TPS)=并发数/平均相应时间

    • 用户请求服务器

    • 服务器内部处理

    • 服务器返回给客户

      QPS 类似 TPS,但是对于一个页面的访问形成一个 TPS,但是一次页面请求可能包含多次对服务器的请求,可能计入多次 QPS

    • QPS(Queries Per Second)每秒查询率,一台服务器每秒能够响应的查询次数.

    • TPS(Transactions Per Second)每秒事务数,软件测试的结果.

  • 系统吞吐量,包括几个重要参数:
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • Linux
    +关注

    关注

    87

    文章

    10991

    浏览量

    206735
  • 性能
    +关注

    关注

    0

    文章

    265

    浏览量

    18817
  • i/o
    i/o
    +关注

    关注

    0

    文章

    33

    浏览量

    4523
收藏 人收藏

    评论

    相关推荐

    Linux应急响应命令总结

    Linux应急响应命令总结
    发表于 11-17 09:08 727次阅读

    HBase性能优化方法总结

    文件系统在HBase集群体系中起到了重要作用,并严重影响了HBase的性能,建议使用EXT3和XFS作为本地文件系统。二、HBase业务访问优化根据业务访问特点,Hbase的工作负载大致分为四种:1. 随机
    发表于 04-20 17:16

    Linux系统的性能优化策略

    近年来,世界上许多大软件公司纷纷推出各种Linux服务器系统及Linux下的应用软件。目前,Linux 已可以与各种传统的商业操作系统分庭抗礼,在服务器市场,占据了相当大的份额。本文分别从磁盘调优,文件系统,内存管理以及编译
    发表于 07-16 06:23

    Linux和Android系统故障和优化性能的方法和流程探讨

    作为一名Linux 或 Android 平台的系统工程师,在开发系统新功能外,主要工作就是优化系统性能,使系统上以最优的状态运行,但是由于硬件问题、软件问题、网络环境等的复杂性和多变性,导致对系统
    发表于 07-22 06:48

    如何对嵌入式linux系统快速启动进行优化

    嵌入式linux快速启动的一些优化的方法,主要是要掌握嵌入式linux系统的启动流程,以便能够在优化时有所指引。下面是一些总结:嵌入式
    发表于 11-04 06:36

    基于Linux的Socket网络编程的性能优化

    基于Linux的Socket网络编程的性能优化 随着Intenet的日益发展和普及,网络在嵌入式系统中应用非常广泛,越来越多的嵌入式设备采用Linux操作系统。
    发表于 10-22 20:48 995次阅读
    基于<b class='flag-5'>Linux</b>的Socket网络编程的<b class='flag-5'>性能</b><b class='flag-5'>优化</b>

    Linux下的网络编程总结

    linux开发编程教程资料——Linux下的网络编程总结,感兴趣的小伙伴们可以看一看。
    发表于 08-23 16:23 0次下载

    DSP程序优化总结

    DSP程序优化总结
    发表于 10-23 14:24 2次下载
    DSP程序<b class='flag-5'>优化</b><b class='flag-5'>总结</b>

    linux redis基础命令总结

    linux redis日常工作命令总结供大家参考
    发表于 11-25 18:21 1326次阅读

    Linux CPU的性能应该如何优化

    Linux系统中,由于成本的限制,往往会存在资源上的不足,例如 CPU、内存、网络、IO 性能。本文,就对 Linux 进程和 CPU 的原理进行分析,总结出 CPU
    的头像 发表于 01-18 08:52 3134次阅读

    Linux服务器排障相关的性能问题、优化和便利工具

    Linux排障技巧在数据中心十分受人重视。数据中心专家对此提供了一些Linux服务器排障相关的性能问题、优化和便利工具参考。
    的头像 发表于 09-03 10:29 1539次阅读

    Linux下Apache性能分析总结

    Linux下Apache性能分析总结(深圳核达中远通电源技术有限公司地址)-该文档为Linux下Apache性能分析
    发表于 09-24 14:53 2次下载
    <b class='flag-5'>Linux</b>下Apache<b class='flag-5'>性能</b>分析<b class='flag-5'>总结</b>

    Linux 性能优化总结!2

    大多数计算机用的主存都是动态随机访问内存(DRAM),只有内核才可以直接访问物理内存。Linux内核给每个进程提供了一个独立的虚拟地址空间,并且这个地址空间是连续的。这样进程就可以很方便的访问内存(虚拟内存)。
    的头像 发表于 05-12 15:16 339次阅读
    <b class='flag-5'>Linux</b> <b class='flag-5'>性能</b><b class='flag-5'>优化</b><b class='flag-5'>总结</b>!2

    Linux 性能优化总结!3

    来存储需要缓存的数据,或者用 Redis 外部缓存组件来优化数据的访问 * cgroups 等方式来限制进程的内存使用情况,确保系统内存不被异常进程耗尽 * /proc/pid/oom_adj 调整核心应用的 oom_score,保证即使内存紧张核心应用也不会被OOM杀死
    的头像 发表于 05-12 15:17 376次阅读

    Linux内核slab性能优化的核心思想

    今天分享一篇内存性能优化的文章,文章用了大量精美的图深入浅出地分析了Linux内核slab性能优化的核心思想,slab是
    的头像 发表于 11-13 11:45 328次阅读
    <b class='flag-5'>Linux</b>内核slab<b class='flag-5'>性能</b><b class='flag-5'>优化</b>的核心思想