0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

在嵌入式中使用设计模式的思想

嵌入式情报局 来源:CSDN 2023-05-05 14:35 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

1、嵌入式

嵌入式的标签多为:低配,偏硬件,底层,资源紧张,代码多以C语言汇编为主,代码应用逻辑简单。但随着AIOT时代的到来,局面组件改变。芯片的性能资源逐渐提升,业务逻辑也逐渐变得复杂,相对于代码的效率而言,代码的复用可移植性要求越来越高,以获得更短的项目周期 和更高的可维护性。下面是AIOT时代嵌入式设备的常见的软件框架。

7344422e-eb0c-11ed-90ce-dac502259ad0.png

设计模式

设计模式的标签:高级语言 ,高端,架构等。在AIOT时代,设计模式与嵌入式能擦出怎样的火花?设计模式可描述为:对于某类相似的问题,经过前人的不断尝试,总结出了处理此类问题的公认的有效解决办法。

嵌入式主要以C语言开发,且面向过程,而设计模式常见于高级语言(面向对象),目前市面上描述设计模式的书籍多数使用JAVA 语言,C语言能实现设计模式吗?设计模式与语言无关,它是解决问题的方法,JAVA可以实现,C语言同样可以实现。同样的,JAVA程序员会遇到需要用模式来处理的问题,C程序员也可能遇见,因此设计模式是很有必要学习的。

模式陷阱:设计模式是针对具体的某些类问题的有效解决办法,不是所有的问题都能匹配到对应的设计模式。因此,不能一味的追求设计模式,有时候简单直接的处理反而更有效。有的问题没有合适的模式,可以尽量满足一些设计原则,如开闭原则(对扩展开放,对修改关闭)

2、观察者模式

在对象之间定义一个一对多的依赖,当一个对象状态改变的时候,所有依赖的对象都会自动收到通知。

735ad0c0-eb0c-11ed-90ce-dac502259ad0.png

实现

主题对象提供统一的注册接口,以及注册函数 。由观察者本身实例化observer_intf 接口,然后使用注册函数,添加到对应的主题列表中,主题状态发生改变,依次通知列表中的所有对象。

structobserver_ops
{
void*(handle)(uint8_tevt);
};
structobserver_intf
{
structobserver_intf*next;
constchar*name;
void*condition;
conststructobserver_ops*ops;
}
intobserver_register(structtopical*top,structobserver_intf*observer);

当主题状态发生改变,将通知到所有观察者,观察者本身也可以设置条件,是否选择接收通知

structobserver_intfobserver_list;

voidXXXX_topical_evt(uint8_tevt)
{
structobserver_intf*cur_observer=observer_list.next;
uint8_t*condition=NULL;
while(cur_observer!=NULL)
{
condition=(uint8_t*)cur_observer->condition;
if(NULL==condition||(condition&&*condition))
{
if(cur_observer->ops->handle){
cur_observer->ops->handle(evt);
}
}
cur_observer=cur_observer->next;
}
}

实例:嵌入式裸机低功耗框架

设备功耗分布

7364c08a-eb0c-11ed-90ce-dac502259ad0.png

其中线路损耗,电源电路等软件无法控制,故不讨论。板载外设,如传感器可能通过某条命令配置进入低功耗模式,又或者硬件上支持控制外设电源来控制功耗。片内外设,及芯片内部的外设,通过卸载相关驱动,关闭时钟配置工作模式来控制功耗。

设备唤醒方式

当系统某个定时事件到来时,系统被主动唤醒处理事件

系统处于睡眠,被外部事件唤醒,如串口接收到一包数据,传感器检测到变化,通过引脚通知芯片

被动唤醒

主动唤醒

系统允许睡眠的条件

外设无正在收发的数据

缓存无需要处理的数据

应用层状态处于空闲(无需要处理的事件)

基于观察者模式的PM框架实现

PM组件提供的接口

structpm
{
structpm*next;
constchar*name;
void(*init)(void);
void(*deinit(void);
void*condition;
};
staticstructpmpm_list;
staticuint8_tpm_num;
staticuint8_tpm_status;

intpm_register(conststructpm*pm,constchar*name)
{
structpm*cur_pm=&pm_list;
while(cur_pm->next)
{
cur_pm=cur_pm->next;
}
cur_pm->next=pm;
pm->next=NULL;
pm->name=name;
pm_num++;
}

voidpm_loop(void)
{
uint32_tpm_condition=0;
structpm*cur_pm=pm_list.next;
staticuint8_tcnt;

/*checkallcondition*/
while(cur_pm)
{
if(cur_pm->condition){
pm_condition|=*((uint32_t*)(cur_pm->condition));
}
cur_pm=cur_pm->next;
}
if(pm_condition==0)
{
cnt++;
if(cnt>=5)
{
pm_status=READY_SLEEP;
}
}
else
{
cnt=0;
}
if(pm_status==READY_SLEEP)
{
cur_pm=pm_list.next;
while(cur_pm)
{
if(cur_pm->deinit){
cur_pm->deinit();
}
cur_pm=cur_pm->next;
}
pm_status=SLEEP;
ENTER_SLEEP_MODE();
}
/*sleep--->wakeup*/
if(pm_status==SLEEP)
{
pm_status=NORMAL;
cur_pm=pm_list.next;
while(cur_pm)
{
if(cur_pm->init){
cur_pm->init();
}
cur_pm=cur_pm->next;
}
}
}

外设使用PM接口

structuart_dev
{
...
structpmpm;
uint32_tpm_condition;
};
structuart_devuart1;

voidhal_uart1_init(void);
voidhal_uart1_deinit(void);

voiduart_init(void)
{
uart1.pm.init=hal_uart1_init;
uart1.pm.deinit=hal_uart1_deinit;
uart1.pm.condition=&uart1.pm_condition;
pm_register(&uart1.pm,"uart1");
}
/*接下来串口驱动检查缓存,发送,接收是否空闲或者忙碌,给uart1.pm_condition赋值*/

结论

PM 电源管理可以单独形成模块,当功耗外设增加时,只需实现接口,注册即可

通过定义段导出操作,可以更加简化应用层或外设的注册逻辑

方便调试,可以很方便打印出系统当前为满足睡眠条件的模块

通过条件字段划分,应该可以实现系统部分睡眠

3、责任链模式

在现实生活中,一个事件(任务)需要经过多个对象处理是很常见的场景。如报销流程,公司员工报销, 首先员工整理报销单,核对报销金额,有误则继续核对整理,直到无误,将报销单递交到财务,财务部门进行核对,核对无误后,判断金额数量,若小于一定金额,则财务部门可直接审批,若金额超过范围,则报销单流传到总经理,得到批准后,整个任务才算结束。类似的情景还有很多,如配置一个WIFI模块,通过AT指令,要想模块正确连入WIFI , 需要按一定的顺序依次发送配置指令 , 如设置设置模式 ,设置 需要连接的WIFI名,密码,每发送一条配置指令,模块都将返回配置结果,而发送者需要判断结果的正确性,再选择是否发送下一条指令或者进行重传。

总结起来是,一系列任务需要严格按照时间线依次处理的顺序逻辑,如下图所示:

736e1fd6-eb0c-11ed-90ce-dac502259ad0.png

在存在系统的情况下,此类逻辑可以很容易的用阻塞延时来实现,实现如下:

voidprocess_task(void)
{
task1_process();
msleep(1000);

task2_process();
mq_recv(&param,1000);

task3_process();
while(mq_recv(¶m,1000)!=OK)
{
if(retry)
{
task3_process();
--try;
}
}
}

在裸机的情况下,为了保证系统的实时性,无法使用阻塞延时,一般使用定时事件配合状态机来实现:

voidprocess_task(void)
{
switch(task_state)
{
casetask1:
task1_process();
set_timeout(1000);break;
casetask2:
task1_process();
set_timeout(1000);break;
casetask3:
task1_process();
set_timeout(1000)break;
default:break;
}
}
/*定时器超时回调*/
voidtimeout_cb(void)
{
if(task_state==task1)
{
task_state=task2;
process_task();
}
else//task2andtask3
{
if(retry)
{
retry--;
process_task();
}
}
}
/*任务的应答回调*/
voidtask_ans_cb(void*param)
{
if(task==task2)
{
task_state=task3;
process_task();
}
}

和系统实现相比,裸机的实现更加复杂,为了避免阻塞,只能通过状态和定时器来实现顺序延时的逻辑,可以看到,实现过程相当分散,对于单个任务的处理分散到了3个函数中处理,这样导致的后果是:修改,移植的不便。而实际的应用中,类似的逻辑相当多,如果按照上面的方法去实现,将会导致应用程序的强耦合

实现

可以发现,上面的情景有以下特点:

任务按顺序执行,只有当前任务执行完了(有结论,成功或者失败)才允许执行下一个任务

前一个任务的执行结果会影响到下一个任务的执行情况

任务有一些特性,如超时时间,延时时间,重试次数

通过以上信息,我们可以抽象出这样一个模型:任务作为节点, 每一个任务节点有其属性:如超时,延时,重试,参数,处理方法,执行结果。当需要按照顺序执行一系列任务时,依次将任务节点串成一条链,启动链运行,则从任务链的第一个节点开始运行,运行的结果可以是 OK , BUSY ,ERROR 。若是OK, 表示节点已处理,从任务链中删除,ERROR 表示运行出错,任务链将停止运行,进行错误回调,可以有用户决定是否继续运行下去。BUSY表示任务链处于等待应答,或者等待延时的情况。当整条任务链上的节点都执行完,进行成功回调。

7375cd1c-eb0c-11ed-90ce-dac502259ad0.png

node数据结构定义

/*shadownodeapitypeforreq_chainsrc*/
typedefstructshadow_resp_chain_node
{
uint16_ttimeout;
uint16_tduration;
uint8_tinit_retry;
uint8_tparam_type;
uint16_tretry;
/*usedinmpool*/
structshadow_resp_chain_node*mp_prev;
structshadow_resp_chain_node*mp_next;

/*usedresp_chain*/
structshadow_resp_chain_node*next;

node_resp_handle_fphandle;
void*param;
}shadow_resp_chain_node_t;

node内存池

使用内存池的必要性:实际情况下,同一时间,责任链的条数,以及单条链的节点数比较有限,但种类是相当多的。比如一个支持AT指令的模块,可能支持几十条AT指令,但执行一个配置操作,可能就只会使用3-5条指令,若全部静态定义节点,将会消耗大量内存资源。因此动态分配是必要的。

73822544-eb0c-11ed-90ce-dac502259ad0.png

初始化node内存池,内存池内所有节点都将添加到free_list。当申请节点时,会取出第一个空闲节点,加入到used_list , 并且接入到责任链。当责任链某一个节点执行完,将会被自动回收(从责任链中删除,并从used_list中删除,然后添加到free_list)

职责链数据结构定义

typedefstructresp_chain
{
boolenable;//enble==true责任链启动
boolis_ans;//收到应答,与void*param共同组成应答信号

uint8_tstate;
constchar*name;
void*param;
TimerEvent_ttimer;
booltimer_is_running;
shadow_resp_chain_node_tnode;//节点链
void(*resp_done)(void*result);//执行结果回调
}resp_chain_t;

职责链初始化

voidresp_chain_init(resp_chain_t*chain,constchar*name,
void(*callback)(void*result))
{
RESP_ASSERT(chain);
/*onlyinitonetime*/
resp_chain_mpool_init();

chain->enable=false;
chain->is_ans=false;
chain->resp_done=callback;
chain->name=name;

chain->state=RESP_STATUS_IDLE;
chain->node.next=NULL;
chain->param=NULL;

TimerInit(&chain->timer,NULL);
}

职责链添加节点

intresp_chain_node_add(resp_chain_t*chain,
node_resp_handle_fphandle,void*param)
{
RESP_ASSERT(chain);
BoardDisableIrq();
shadow_resp_chain_node_t*node=chain_node_malloc();
if(node==NULL)
{
BoardEnableIrq();
RESP_LOG("nodemallocerror,nofreenode");
return-2;
}
/*初始化节点,并加入责任链*/
shadow_resp_chain_node_t*l=&chain->node;
while(l->next!=NULL)
{
l=l->next;
}
l->next=node;
node->next=NULL;
node->handle=handle;
node->param=param;
node->timeout=RESP_CHIAN_NODE_DEFAULT_TIMEOUT;
node->duration=RESP_CHIAN_NODE_DEFAULT_DURATION;
node->init_retry=RESP_CHIAN_NODE_DEFAULT_RETRY;
node->retry=(node->init_retry==0)?0:(node->init_retry-1);
BoardEnableIrq();
return0;
}

职责链的启动

voidresp_chain_start(resp_chain_t*chain)
{
RESP_ASSERT(chain);
chain->enable=true;
}

职责链的应答

voidresp_chain_set_ans(resp_chain_t*chain,void*param)
{
RESP_ASSERT(chain);
if(chain->enable)
{
chain->is_ans=true;
if(param!=NULL)
chain->param=param;
else
{
chain->param="NOPARAM";
}
}
}

职责链的运行

intresp_chain_run(resp_chain_t*chain)
{
RESP_ASSERT(chain);
if(chain->enable)
{
shadow_resp_chain_node_t*cur_node=chain->node.next;
/*maybeansoccurinhandle,socannotchangestatedirectwhenanscomming*/
if(chain->is_ans)
{
chain->is_ans=false;
chain->state=RESP_STATUS_ANS;
}

switch(chain->state)
{
caseRESP_STATUS_IDLE:
{
if(cur_node)
{
uint16_tretry=cur_node->init_retry;
if(cur_node->handle)
{
cur_node->param_type=RESP_PARAM_INPUT;
chain->state=cur_node->handle((resp_chain_node_t*)cur_node,cur_node->param);
}
else
{
RESP_LOG("nodehandleisnull,gotonextnode");
chain->state=RESP_STATUS_OK;
}
if(retry!=cur_node->init_retry)
{
cur_node->retry=cur_node->init_retry>0?(cur_node->init_retry-1):0;
}
}
else
{
if(chain->resp_done)
{
chain->resp_done((void*)RESP_RESULT_OK);
}
chain->enable=0;
chain->state=RESP_STATUS_IDLE;
TimerStop(&chain->timer);
chain->timer_is_running=false;
}
break;
}
caseRESP_STATUS_DELAY:
{
if(chain->timer_is_running==false)
{
chain->timer_is_running=true;
TimerSetValueStart(&chain->timer,cur_node->duration);
}
if(TimerGetFlag(&chain->timer)==true)
{
chain->state=RESP_STATUS_OK;
chain->timer_is_running=false;
}
break;
}
caseRESP_STATUS_BUSY:
{
/*waitingforansortimeout*/
if(chain->timer_is_running==false)
{
chain->timer_is_running=true;
TimerSetValueStart(&chain->timer,cur_node->timeout);
}
if(TimerGetFlag(&chain->timer)==true)
{
chain->state=RESP_STATUS_TIMEOUT;
chain->timer_is_running=false;
}
break;
}
caseRESP_STATUS_ANS:
{
/*alreadygottheans,puttheparambacktotherequesthandle*/
TimerStop(&chain->timer);
chain->timer_is_running=false;
if(cur_node->handle)
{
cur_node->param_type=RESP_PARAM_ANS;
chain->state=cur_node->handle((resp_chain_node_t*)cur_node,chain->param);
}
else
{
RESP_LOG("nodehandleisnull,gotonextnode");
chain->state=RESP_STATUS_OK;
}
break;
}
caseRESP_STATUS_TIMEOUT:
{
if(cur_node->retry)
{
cur_node->retry--;
/*retrytorequestuntilcntis0*/
chain->state=RESP_STATUS_IDLE;
}
else
{
chain->state=RESP_STATUS_ERROR;
}
break;
}
caseRESP_STATUS_ERROR:
{
if(chain->resp_done)
{
chain->resp_done((void*)RESP_RESULT_ERROR);
}
chain->enable=0;
chain->state=RESP_STATUS_IDLE;
TimerStop(&chain->timer);
chain->timer_is_running=false;
cur_node->retry=cur_node->init_retry>0?(cur_node->init_retry-1):0;
chain_node_free_all(chain);
break;
}
caseRESP_STATUS_OK:
{
/*getthenextnode*/
cur_node->retry=cur_node->init_retry>0?(cur_node->init_retry-1):0;
chain_node_free(cur_node);
chain->node.next=chain->node.next->next;
chain->state=RESP_STATUS_IDLE;
break;
}
default:
break;
}
}
returnchain->enable;
}

测试用例

定义并初始化责任链

voidchain_test_init(void)
{
resp_chain_init(&test_req_chain,"testrequest",test_req_callback);
}

定义运行函数,在主循环中调用

voidchain_test_run(void)
{
resp_chain_run(&test_req_chain);
}

测试节点添加并启动触发函数

voidchain_test_tigger(void)
{
resp_chain_node_add(&test_req_chain,node1_req,NULL);
resp_chain_node_add(&test_req_chain,node2_req,NULL);
resp_chain_node_add(&test_req_chain,node3_req,NULL);
resp_chain_start(&test_req_chain);
}

分别实现节点请求函数

/*延时1s后执行下一个节点*/
intnode1_req(resp_chain_node_t*cfg,void*param)
{
cfg->duration=1000;
RESP_LOG("node1senddirectrequest:delay:%dms",cfg->duration);
returnRESP_STATUS_DELAY;
}
/*超时时间1S,重传次数5次*/
intnode2_req(resp_chain_node_t*cfg,void*param)
{
staticuint8_tcnt;
if(param==NULL)
{
cfg->init_retry=5;
cfg->timeout=1000;
RESP_LOG("node2sendrequestmaxretry:%d,waitingforans...");
returnRESP_STATUS_BUSY;
}
RESP_LOG("node2getans:%d",(int)param);
returnRESP_STATUS_OK;
}
/*非异步请求*/
intnode3_req(resp_chain_node_t*cfg,void*param)
{
RESP_LOG("node4senddirectrequest");
returnRESP_STATUS_OK;
}

voidans_callback(void*param)
{
resp_chain_set_ans(&test_req_chain,param);
}

结论

实现了裸机处理 顺序延时任务

较大程度的简化了应用程的实现,用户只需要实现响应的处理函数 , 调用接口添加,即可按时间要求执行

参数为空,表明为请求 ,否则为应答。(在某些场合,请求可能也带参数,如接下来所说的LAP协议,此时需要通过判断参数的类型)






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 嵌入式
    +关注

    关注

    5186

    文章

    20145

    浏览量

    328735
  • 电源管理
    +关注

    关注

    117

    文章

    6548

    浏览量

    147527
  • JAVA
    +关注

    关注

    20

    文章

    2997

    浏览量

    115655
  • C语言
    +关注

    关注

    183

    文章

    7642

    浏览量

    144594

原文标题:在嵌入式中使用设计模式的思想

文章出处:【微信号:嵌入式情报局,微信公众号:嵌入式情报局】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    深入了解嵌入式编程

    能从PC机器编程去看嵌入式问题,那是第一步;学会用嵌入式编程思想,那是第二步;用PC的思想嵌入式思想
    的头像 发表于 10-18 09:56 4184次阅读

    如何在嵌入式系统设计中使用UML技术

    嵌入式系统设计是一个软、硬件结合的协同设计(Hardware/Software Co-design),需要不同技术背景的人共同开发。 本文将重点讨论如何在嵌入式系统设计中使用 UML 技术,并用车载 GPS 终端项目作为实例来具
    发表于 04-14 08:02 4553次阅读
    如何在<b class='flag-5'>嵌入式</b>系统设计<b class='flag-5'>中使</b>用UML技术

    嵌入式软件设计之思想与方法

    本帖最后由 lee_st 于 2018-2-24 17:16 编辑 嵌入式软件设计之思想与方法
    发表于 02-24 17:15

    怎么利用分层思想进行嵌入式项目设计

    利用分层思想进行嵌入式项目设计,你试过吗?
    发表于 05-22 10:16

    嵌入式开发必须掌握的设计思想

    嵌入式开发重要的2个设计思想
    发表于 03-09 07:02

    嵌入式设备中使用JavaScript

    只听说过汇编,c做嵌入式,从不曾想JAVAScript也牛到涉入硬件领域了,原本对他的思维定格就是一个浏览器脚本。看来真应了那句话‘只有想不到,没有做不到’话不多说看看这些大佬的帖子嵌入式设备
    发表于 11-08 06:14

    嵌入式系统硬件抽象层的设计思想简析

    嵌入式系统硬件抽象层(HAL & BSP)的设计思想1 前言1.1 层次化思想1.2 模块化思想1.3 对象化思想2 板级支持包(BSP)3
    发表于 02-11 07:49

    嵌入式系统教学模式研究

    嵌入式系统教学模式研究  回顾从单片机教学到现在的嵌入式系统教学20余年的发展,介绍嵌入式系统教学流行的微处理器和嵌入式操作系统
    发表于 03-29 15:08 1780次阅读

    基于AVR单片机的嵌入式“瘦服务器”系统设计思想

    基于AVR单片机的嵌入式“瘦服务器”系统设计思想 根据国内嵌入式设备的研究形势和产业发展规模,提出了基于AVR单片机(ATmega103)的嵌入式 “瘦
    发表于 05-04 22:10 1009次阅读
    基于AVR单片机的<b class='flag-5'>嵌入式</b>“瘦服务器”系统设计<b class='flag-5'>思想</b>

    嵌入式系统中使用FPGA时的常见问题及对策

    电子发烧友网核心提示 :嵌入式系统中使用FPGA时会经常出现以下常见问题,如在嵌入式设计中,怎样使用FPGA、
    发表于 10-17 13:38 1281次阅读

    如何在嵌入式Linux中使用GPIO

    了解如何在嵌入式Linux中使用GPIO,特别强调Zynq-7000系列。 我们介绍了基本的用户和内核空间GPIO使用情况,以及GPIO,GPIO密钥和GPIO LED上的bit-banged I / O.
    的头像 发表于 11-26 07:02 4526次阅读

    C嵌入式编程设计模式

    C嵌入式编程设计模式1 嵌入式系统有何特殊之处 11 嵌入式设计的约束 12 嵌入式工具 13 OSRTOS还是没有操作系统 14
    发表于 11-03 15:36 18次下载
    C<b class='flag-5'>嵌入式</b>编程设计<b class='flag-5'>模式</b>

    嵌入式系统系列丛书-时间触发嵌入式系统设计模式

    嵌入式系统系列丛书-时间触发嵌入式系统设计模式
    发表于 12-13 11:30 0次下载

    嵌入式思想与PC思想结合

    能从PC机器编程去看嵌入式问题,那是第一步。
    的头像 发表于 05-10 10:42 1012次阅读
    <b class='flag-5'>嵌入式</b><b class='flag-5'>思想</b>与PC<b class='flag-5'>思想</b>结合

    如何在嵌入式中使用设计模式思想

    设计模式的标签:高级语言 ,高端,架构等。AIOT时代,设计模式嵌入式能擦出怎样的火花?设计模式可描述为:对于某类相似的问题,经过前人的
    的头像 发表于 08-09 16:15 1208次阅读
    如何在<b class='flag-5'>嵌入式</b><b class='flag-5'>中使</b>用设计<b class='flag-5'>模式</b>的<b class='flag-5'>思想</b>?