0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

详解Cortex-M位带操作

嵌入式大杂烩 来源:嵌入式大杂烩 作者:嵌入式大杂烩 2023-04-27 15:03 次阅读

我相信很多朋友在学习单片机之前都学习过51单片机,假设在51单片机的P1.1的IO口上挂了一个LED,那么你单独对LED的操作就是P1.1 = 0或P1.1 = 1,这样你就可以单独的对P1端的第一个IO口进行上下拉操作,然而对于STM32,是没有这种操作的,那么为了像51单片机一样能够单独的对某个端的某一个IO单独操作,就引入了__位带操作__,简而言之,就是为了去单独操作STM32里面PA的第1个IO口,所以才有了位带这样的操作机制。

1 什么是位带操作

在讲解位带操作之前,首先要搞清楚什么是位带操作。我们知道,32位的处理器的32位地址总线提供了4G的地址空间,几乎所有的嵌入式产品是足够用的。 Cortex-M就利用了额外的空间实现了称为位带(Bit-Banding)操作的硬件属性,该技术使用地址空间的两个不同区域来指向同一物理地址 。在主位带区域,每个地址对应一个字节的数据,在“位带别名”区域中,每个地址对应同一个数据的一个位。

如下图所示。在CM3的寄存器映射图中有1MB的 bit band区,这里被称为位带区,与之对应的是32MB的bit band别名区,这里被称为位带别名区。

C:\\Users\\BruceOu\\Desktop\\20191203162525194.png

STM32的位带别名区会把位带区中的每一位膨胀成一个32位的字,所以相应的别名区的内存也会是位带区的32倍。从上图可以看出,位带操作同时支持SRAM和片上外设,支持位带操作的两个内存区域范围如下:

SRAM区:0x20000000 ~ 0x200FFFFF,最低1M的范围;

片上外设区: 0x40000000 ~ 0x400FFFFF,最低1M的范围;

位带操作就是把位带区中一个地址的8个位分别映射到位带别名区的8个地址(LSB有效,即最低位有效),通过操作相应地址的方式实现操作某个位。以SRAM为例,位带区和位带别名区的映射如下图所示:

C:\\Users\\BruceOu\\Desktop\\005xOcwJzy7gW7umetS44.png

位带区里每个地址的每1位膨胀为别名区里一个32位的字(32位处理器中,1字=4字节),例如:0x20000000的第0位对应0x22000000,第1位对应0x22000004等。

2 位带操作的计算公式

既然位带操作属于Cortex-M内核的一部分,那么在Cortex-M官方手册也是给出了相应的计算公式的,其通用公式如下:

别名区地址 = 别名区起始地址 + (位字节地址偏移量 * 8 + n) * 4

其中,8表示一个字节有8位,4表示膨胀了4个字节,因此位带区和位带别名区也就是32倍的关系。

两个区的计算公式为:

SRAM区:AliasAddr = 0x22000000 + (A - 0x20000000) * 32 + n * 4

片上外设区:AliasAddr = 0x42000000 + (A - 0x40000000)* 32 + n * 4

其中,AliasAddr是别名区的地址,A是位带区的地址,n是该端口的上的某一位。

接下来就是对这个地址进行操作了,写1,该位输出1,写0,就输出0。

3 位带操作代码实现

这里STM32F1为例,根据STM32的《RM0008 Reference manual》手册,其GPIO的地址映射如下:

1682578697232m0vpen34s4

GPIOx_ODR 寄存器如下:

1682578697691w447n9kidh

每个寄存器32位,占4个地址,在访问或修改某个寄存器时,是从首地址开始的,逻辑运算则是直接可涵盖到32bit,offset 为 0x0C。GPIOA 的首地址为0x40010800,因此GPIOx_ODR 寄存器的地址为0x4001080C。则所有的GPIO映射如下:

//IO口地址映射
#define GPIOA_ODR_Addr    (GPIOA_BASE+12) //0x4001080C 
#define GPIOB_ODR_Addr    (GPIOB_BASE+12) //0x40010C0C 
#define GPIOC_ODR_Addr    (GPIOC_BASE+12) //0x4001100C 
#define GPIOD_ODR_Addr    (GPIOD_BASE+12) //0x4001140C 
#define GPIOE_ODR_Addr    (GPIOE_BASE+12) //0x4001180C 
#define GPIOF_ODR_Addr    (GPIOF_BASE+12) //0x40011A0C    
#define GPIOG_ODR_Addr    (GPIOG_BASE+12) //0x40011E0C    

#define GPIOA_IDR_Addr    (GPIOA_BASE+8) //0x40010808 
#define GPIOB_IDR_Addr    (GPIOB_BASE+8) //0x40010C08 
#define GPIOC_IDR_Addr    (GPIOC_BASE+8) //0x40011008 
#define GPIOD_IDR_Addr    (GPIOD_BASE+8) //0x40011408 
#define GPIOE_IDR_Addr    (GPIOE_BASE+8) //0x40011808 
#define GPIOF_IDR_Addr    (GPIOF_BASE+8) //0x40011A08 
#define GPIOG_IDR_Addr    (GPIOG_BASE+8) //0x40011E08

上述只是位带区的地址,根据位带操作的计算公式,则操作位带别名区的地址方法如下:

//IO口操作宏定义
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum))

以上代码的第一句是转换的关键,当然相对的前面的计算公式做了优化,也就是将SRAM和片上外设合并在一起。addr & 0XF0000000 得到SRAM和片上外设的首地址,然后加0x2000000表示位带别名区相对位带区的偏移量,(addr &0xFFFFF)<<5)和(bitnum<<2)就是前面“*32”和“*4”,只是换成了移位操作,因为移位操作相对乘法运算速度更快。

好了,接下来使用位带操作来写一个GPIO流水灯,同时使用库函数来做比较。

【main.c】

/* Includes ------------------------------------------------------------------*/
#include "stm32f1_bsp_led.h"

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/*简单延时函数*/
void Delay(uint32_t xms); 

/* Private functions ---------------------------------------------------------*/

/**
  * @brief     主函数
  * @param     None
  * @retval    
  */
int main(void)
{
    /* LED 初始化 */
    LED_GPIO_Config();
 
    while (1)
    {
#if 0
        GPIO_SetBits(GPIOB,GPIO_Pin_0);  // 亮
        Delay(0xfFfff);
        GPIO_ResetBits(GPIOB,GPIO_Pin_0);  // 灭

        GPIO_SetBits(GPIOG,GPIO_Pin_6);  // 亮
        Delay(0xfFfff);
        GPIO_ResetBits(GPIOG,GPIO_Pin_6);  // 灭

        GPIO_SetBits(GPIOG,GPIO_Pin_7);  // 亮
        Delay(0xffFff);
        GPIO_ResetBits(GPIOG,GPIO_Pin_7);  // 灭
#else
        PBout(0) = 1;  // 亮
        Delay(0xfFfff);
        PBout(0) = 0;  // 灭

        PGout(6) = 1;  // 亮
        Delay(0xfFfff);
        PGout(6) = 0;  // 灭

        PGout(7) = 1;  // 亮
        Delay(0xffFff);
        PGout(7) = 0;  // 灭
#endif

    }
}

/**
  * @brief  延时函数
  * @param  
            xms 延时长度
  * @retval None
  */
void Delay( uint32_t xms)
{
    //for(; nCount != 0; nCount--);(方法一)
    while(xms--);//(方法二)
}

【stm32f1_bsp_led.c】

/* Includes ------------------------------------------------------------------*/
#include "stm32f1_bsp_led.h"

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/

/**
  * @brief  初始化LED的GPIO
  * @param  None
  * @retval None
  */
void LED_GPIO_Config(void)
{
    /*定义一个GPIO_InitTypeDef类型的结构体*/
    GPIO_InitTypeDef GPIO_InitStructure;

    /*开启LED的外设时钟*/
    RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOG, ENABLE); 

    /*设置IO口*/
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //设置引脚模式为通用推挽输出
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //设置引脚速率为50MHz 

    /*调用库函数,初始化GPIOB0*/
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;  //选择要控制的GPIOB引脚
    GPIO_Init(GPIOB, &GPIO_InitStructure);

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7;/*选择要控制的引脚*/
    GPIO_Init(GPIOG, &GPIO_InitStructure);

    /* 开启所有led灯*/
    GPIO_SetBits(GPIOB, GPIO_Pin_0);
    GPIO_SetBits(GPIOG, GPIO_Pin_6|GPIO_Pin_7);	 
}

【stm32f1_bsp_led.h】

#ifndef __STM32F1_BSP_LED_H__
#define __STM32F1_BSP_LED_H__

#ifdef __cplusplus
 extern "C" {
#endif 

/* Includes ------------------------------------------------------------------*/
#include "stm32f10x.h"

/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* Exported macro ------------------------------------------------------------*/
//位带操作,实现51类似的GPIO控制功能
//具体实现思想,参考<
//IO口操作宏定义
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum)) 

//IO口地址映射
#define GPIOA_ODR_Addr    (GPIOA_BASE+12) //0x4001080C 
#define GPIOB_ODR_Addr    (GPIOB_BASE+12) //0x40010C0C 
#define GPIOC_ODR_Addr    (GPIOC_BASE+12) //0x4001100C 
#define GPIOD_ODR_Addr    (GPIOD_BASE+12) //0x4001140C 
#define GPIOE_ODR_Addr    (GPIOE_BASE+12) //0x4001180C 
#define GPIOF_ODR_Addr    (GPIOF_BASE+12) //0x40011A0C    
#define GPIOG_ODR_Addr    (GPIOG_BASE+12) //0x40011E0C    

#define GPIOA_IDR_Addr    (GPIOA_BASE+8) //0x40010808 
#define GPIOB_IDR_Addr    (GPIOB_BASE+8) //0x40010C08 
#define GPIOC_IDR_Addr    (GPIOC_BASE+8) //0x40011008 
#define GPIOD_IDR_Addr    (GPIOD_BASE+8) //0x40011408 
#define GPIOE_IDR_Addr    (GPIOE_BASE+8) //0x40011808 
#define GPIOF_IDR_Addr    (GPIOF_BASE+8) //0x40011A08 
#define GPIOG_IDR_Addr    (GPIOG_BASE+8) //0x40011E08 
 
//IO口操作,只对单一的IO口!
//确保n的值小于16!
#define PAout(n)   BIT_ADDR(GPIOA_ODR_Addr,n)  //输出 
#define PAin(n)    BIT_ADDR(GPIOA_IDR_Addr,n)  //输入 

#define PBout(n)   BIT_ADDR(GPIOB_ODR_Addr,n)  //输出 
#define PBin(n)    BIT_ADDR(GPIOB_IDR_Addr,n)  //输入 

#define PCout(n)   BIT_ADDR(GPIOC_ODR_Addr,n)  //输出 
#define PCin(n)    BIT_ADDR(GPIOC_IDR_Addr,n)  //输入 

#define PDout(n)   BIT_ADDR(GPIOD_ODR_Addr,n)  //输出 
#define PDin(n)    BIT_ADDR(GPIOD_IDR_Addr,n)  //输入 

#define PEout(n)   BIT_ADDR(GPIOE_ODR_Addr,n)  //输出 
#define PEin(n)    BIT_ADDR(GPIOE_IDR_Addr,n)  //输入

#define PFout(n)   BIT_ADDR(GPIOF_ODR_Addr,n)  //输出 
#define PFin(n)    BIT_ADDR(GPIOF_IDR_Addr,n)  //输入

#define PGout(n)   BIT_ADDR(GPIOG_ODR_Addr,n)  //输出 
#define PGin(n)    BIT_ADDR(GPIOG_IDR_Addr,n)  //输入


#define ON  1
#define OFF 0

/* 带参宏,可以像内联函数一样使用 */
#define LED1(a)    if (a)    \\
                    GPIO_SetBits(GPIOB,GPIO_Pin_0);\\
                    else        \\
                    GPIO_ResetBits(GPIOB,GPIO_Pin_0)

#define LED2(a)    if (a)    \\
                    GPIO_SetBits(GPIOG,GPIO_Pin_6);\\
                    else        \\
                    GPIO_ResetBits(GPIOG,GPIO_Pin_6)

#define LED3(a)    if (a)    \\
                    GPIO_SetBits(GPIOG,GPIO_Pin_7);\\
                    else        \\
                    GPIO_ResetBits(GPIOG,GPIO_Pin_7)


/* 直接操作寄存器的方法控制IO */
#define    digitalHi(p,i)            {p->BSRR=i;}            //设置为高电平        
#define    digitalLo(p,i)            {p->BRR=i;}             //输出低电平
#define    digitalToggle(p,i)        {p->ODR ^=i;}           //输出反转状态


/* 定义控制IO的宏 */
#define LED1_TOGGLE        digitalToggle(GPIOB,GPIO_Pin_0)
#define LED1_ON            digitalHi(GPIOB,GPIO_Pin_0)
#define LED1_OFF           digitalLo(GPIOB,GPIO_Pin_0)

#define LED2_TOGGLE        digitalToggle(GPIOC,GPIO_Pin_4)
#define LED2_ON            digitalHi(GPIOG,GPIO_Pin_6)
#define LED2_OFF           digitalLo(GPIOG,GPIO_Pin_6)

#define LED3_TOGGLE        digitalToggle(GPIOC,GPIO_Pin_3)
#define LED3_ON            digitalHi(GPIOG,GPIO_Pin_7)
#define LED3_OFF           digitalLo(GPIOG,GPIO_Pin_7)
/* Exported functions ------------------------------------------------------- */
void LED_GPIO_Config(void);

#ifdef cplusplus
}
#endif

#endif /* __STM32F1_BSP_LED_H__ */

不管使用哪种方式,其实验现象都是一样的,但是使用位带操作更方便些,操作者步骤更少,下面举例说明。

实例:欲设置地址 0x2000_0000 中的比特 2,则使用普通操作和位带操作的设置过程如下图所示:

1682578698223h4kgh19i0c

普通操作和位带操作的汇编对比代码如下:

1682578698688e3821chru8

位带读操作相对简单,普通操作和位带操作的设置过程如下图所示:

1682578699026zwj46gliu8

普通操作和位带操作的汇编对比代码如下:

1682578699376yo56mm73ev

可以看出位带操作的步骤更少,相对普通操作更简洁。

而且位带操作属于原子操作,在多任务系统中,位带操作可以解决共享资源中的紊乱危象,关于该部分内容可以参看《Cortex-M3权威指南》。

__总的来说,位带的主要优点__是数据的一个单独位可以通过一条指令来读或者写,而不需要操作一些利的寄存器。例如,一条从位带别名区域地址进行读操作的LDR指令会将值0或者1加1载入寄存器。类似的,一条STR指令在向位带别名区的地址写入时,只是修改主区域中数据的一位。当然修改需要由硬件来执行读写操作,但是只有一条指令(STR)被取指并执行。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    18304

    浏览量

    222355
  • 单片机
    +关注

    关注

    6002

    文章

    43990

    浏览量

    621105
  • 嵌入式
    +关注

    关注

    4984

    文章

    18300

    浏览量

    288778
  • 寄存器
    +关注

    关注

    30

    文章

    5042

    浏览量

    117800
  • Cortex-M
    +关注

    关注

    2

    文章

    224

    浏览量

    29577
收藏 人收藏

    评论

    相关推荐

    CorTex-M3带操作区的理解

    的影响。//STM32支持了带操作(bit_band),有两个区中实现了带。其中一个是SRAM 区的最低1MB 范围,第二个则是片内外设 //区的最低1MB 范围。这两个区中的地址除了可以像普通
    发表于 10-31 19:51

    请问Cortex-M3权威指南的带操作该怎么理解?

    Cortex-M3权威指南第90页,带操作的例子“1. 在地址 0x20000000处写入 0x3355AACC 2. 读取地址 0x22000008。本次读访问将读取 0x20000000,并提
    发表于 09-29 21:43

    如何选择正确的Cortex-M处理器?

    Cortex-M4的SIMD操作可以并行处理两个16数据和4个8数据。例如,图4展示的QADD8 和 QADD16 操作:表 4: 指
    发表于 10-22 08:16

    Cortex-M 系列处理特点和区别详解

    3ARM Cortex-M4“8/16 ”应用“16/32 ”应用“32 /DSC”应用低成本和简单性性能效率有效的数字信号控制Cortex-
    发表于 01-14 10:13

    ARM Cortex-M处理器详解 精选资料分享

    ARM Cortex-M处理器家族现在有8款处理器成员。在本文中,我们会比较Cortex-M系列处理器之间的产品特性,重点讲述如何根据产品应用选择正确的Cortex-M处理器。本文中会详细的对照
    发表于 07-16 07:57

    带操作的引入

    #带操作的引入提起操作大家应该都不会陌生,此前在51单片机中相信大家都接触过***it这样的操作,其最大的特点就是简洁方便啦~不过在32
    发表于 08-11 08:08

    STM32F429第十二篇之带操作 精选资料推荐

    文章目录前言与或操作带操作基本概念地址转换编程实现操作前言本文主要介绍以
    发表于 08-20 07:19

    带操作原理

    (四)带操作1.带操作原理STM32将每个比特膨胀成为32字,访问这些字就实现了访问带别
    发表于 11-30 08:20

    stm32 m0带操作程序分享

    stm32 m0带操作程序分享
    发表于 12-15 06:59

    带操作原理详解+LED实验的相关资料分享

    【嵌入式系统】带操作原理详解+LED实验解读1、带操作的实质
    发表于 12-16 07:06

    STM32带操作的方法

    前言这篇文章主要用来讲解STM32中的带操作,学习过51单片机的应改了解,在控制51单片机IO引脚时,只需要向某一个IO口赋值就可以实现,对应IO口的输出高或地。那么STM32可以不可以像51
    发表于 01-17 06:27

    带操作的相关资料推荐

    注意:本文中关于STM32的带操作原理只适用于Cortex-M3和Cortex-M4(F)内核处理器,Cortex-M系列的其他内核处理器
    发表于 02-07 09:24

    Cortex-M可以跑Linux操作系统吗?

    Cortex-M可以跑Linux操作系统吗?
    发表于 12-01 11:36 2次下载
    <b class='flag-5'>Cortex-M</b>可以跑Linux<b class='flag-5'>操作</b>系统吗?

    Cortex-M带操作的原理

    Cortex-M带操作的原理
    的头像 发表于 10-24 15:27 543次阅读
    <b class='flag-5'>Cortex-M</b>位<b class='flag-5'>带操作</b>的原理

    stm32位带操作有什么用

    STM32位带操作是一种在ARM Cortex-M微控制器中使用的特殊技术,它允许同时处理多个位,并且可以提高代码效率和性能。在这篇文章中,我将详细介绍STM32位带操作的原理、用途以及如何使用它
    的头像 发表于 12-22 16:02 476次阅读