0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

液相法、3C-SiC!中科院又取得新成果

行家说三代半 来源:行家说三代半 2023-04-24 09:54 次阅读

中科院物理所陈小龙团队又一次公布他们在SiC方面的研发新成果:

4月18日,中科院物理所在期刊上发表了关于采用液相法生长3C-SiC衬底的技术文献。

文献提到,该团队是通过在4H-SiC衬底上生长3C-SiC单晶,技术成果超出了以往理论预期,通过这项技术,他们能够持续稳定地生长高质量和大尺寸的3C-SiC晶体——直径为2~4英寸,厚度为4.0~10毫米。

该团队认为,该技术拓宽了异质晶体生长的机制,并为3C-SiC晶体的大规模生产提供了可行的途径,未来3C-SiC功率器件性能有望比目前主流的4H-SiC更好。

34d5d7dc-dfae-11ed-bfe3-dac502259ad0.png

液相法生长3C-SiC4英寸、10mm

该团队开发了一个生长3C-SiC的液相TSSG长晶设备,其生长过程是这样的:首先,在高温石墨坩埚区域中溶解C粉;然后在对流作用下,将C粉从高温区输送到低温区;最后在低温籽晶上进行3C-SiC结晶。

34df8232-dfae-11ed-bfe3-dac502259ad0.png

该技术的相关数据汇总如下:晶圆尺寸为2-4英寸、晶体厚度为4-10mm。

34ec1362-dfae-11ed-bfe3-dac502259ad0.png

这种3C-SiC晶体的液相TSSG生长模型示意图如下:

34f5d1a4-dfae-11ed-bfe3-dac502259ad0.png

质量方面,经过测量,所生长的3C-SiC晶体(111)面半峰全宽(FWHM)为28.8至32.4弧秒,平均为30.0弧秒,整体晶圆非常均匀。

从3C-SiC的切片上看,典型的三角形凹坑大小约为5微米,可能来自螺纹位错(TSDs)和螺纹边缘位错(TEDs)的密度分别约为4.3×104/cm2和13.9×104/cm2,并且没有观察到在3C-SiC中常见的双定位边界(DPBs)。

350b4c5a-dfae-11ed-bfe3-dac502259ad0.png

3C-SiC“闪光点”有哪些?

其实,业界很早就进行3C-SiC的研发,在1987年左右,日本电工实验室开发出第一款基于硅衬底的3C-SiC横向MOSFET

但是由于种种原因(下面展开讲),3C-SiC“沉寂”了,发展速度远不如4H-SiC。但是最近几年,3C-SiC块材和硅基3C-SiC取得了巨大进展,业界的关注度又重新回来了。

我们先来看看3C-SiC的优势。

目前,SiC材料已知的晶体结构有250多种,主要类型有六方体(2H-SiC、4H-SiC、6H-SiC)和立方体3C-SiC等。

35304618-dfae-11ed-bfe3-dac502259ad0.png

实际上,如果从材料特性来看,相比4H-SiC晶型材料,3C-SiC在禁带宽度、击穿场强等各方面都处于劣势,这也是为什么主流的商用器件都是在4H-SiC上制造的原因之一。但是,3C-SiC被认为是“明日之星”,前景备受看好,这又是为什么?

353e5348-dfae-11ed-bfe3-dac502259ad0.png

首先是电子迁移率。

据报道,硅基3C-SiC MOSFET的n沟道迁移率范围为100-370cm2/V·s。而横向4H-SiC MOSFET通常为20-40cm2/V·s,沟槽器件为6-90 cm2/V·s。京都大学通过氮气钝化在A面上创建SiC MOSFET,将沟道迁移率提升到131cm2/V·s,但也低于硅基3C-SiC器件。

其次是可靠性。

目前,SiC MOSFET核心技术瓶颈集中在栅氧层界面质量差,不仅沟道迁移率低,而且会影响阈值电压稳定性,栅极氧化物在高温下还存在失效的弱点。而3C-SiC和绝缘氧化物栅之间的界面陷阱浓度低得多,有助于制造可靠和长寿命的器件。

3C-SiC势垒高度为3.7 eV,该值远大于硅和4H-SiC,因此在栅极驱动电路漏电流相同时,3C-SiC MOSFET内的电场比4H-SiC高两到三倍。因此,3C-SiC 沟槽功率 MOSFET 的降额要求远没有4H-SiC产品严格。

3547a7c2-dfae-11ed-bfe3-dac502259ad0.png

第三是加工。

4H-SiC和GaN的加工与传统硅完全不同,更具挑战性。相比之下,低能禁带宽度的3C-SiC更接近硅,这在加工成器件时具有许多好处。3C-SiC难点在哪?液相法生长有何意义?

前面提到,全球研究人员对3C-SiC进行了几十年的努力,但产业化仍然是一个挑战。我们来看看3C-SiC的难点。

首先,3C-SiC晶体生长较难。

目前,六方碳化硅(4H、6H)晶体的生长技术已经成熟,高质量的衬底已经完全商业化,但是体块3C-SiC单晶的生长依然滞后。

一是生长方法不太合适,传统PVT法是生长4H-SiC和6H-SiC晶体的成熟技术,但不适用于生长3C-SiC晶体,因为在它需要更高的Si/C比率,即使采用改良式密闭空间PVT方法,晶体厚度也非常有限,并不适用于大规模生产。

二是在实际生产中,3C-SiC并不稳定,在高于1900-2000℃高温下会转变为六方SiC多晶。正是如此,相较之下,4H-SiC更具商业可行性,相较于6H-SiC,4H-SiC还具有较高的临界电场强度和高电子迁移速率,成为了制作功率器件的首选。

其次,硅基3C-SiC薄膜问题多多。

体块3C-SiC晶体生长路不通,为此,大部分的研发都转向了在硅衬底上进行3C-SiC薄膜沉积,然后再加工成器件。但这种方式存在几个问题需要克服。

一是会存在巨大的晶格失配(约19%)和热膨胀失配(约8%),从而导致缺陷密度过高,大大恶化了器件的性能。试验结果表明,在硅衬底上生长的3C-SiC缺陷密度达到103-104cm-2。

尽管α-SiC在晶格参数、热膨胀系数和化学相容性方面和3C-SiC匹配性非常好,是非常理想的制备3C-SiC的衬底。然而α-SiC/3C-SiC存在双定位晶界(Double positioning boundaries,DPBs)结构缺陷的问题,它与杂质相互作用会导致肖特基接触不良行为。因此,制备3C-SiC晶体的首要问题是减少α-SiC的DPBs。

二是硅基3C-SiC难以实现选择性掺杂。高杂质掺杂对于 3C-SiC 功率器件中的低欧姆接触和薄层电阻是必要的。在1800 °C以下,SiC掺杂扩散率通常较低,所以才需要离子注入,注入后采用高温退火 (PIA) 来修复晶格损伤并将掺杂剂激活。SiC PIA需要极高的温度,n型SiC通常高于1400 °C,p型需要更高的温度 (>1600 °C)。而硅基3C-SiC的激活退火温度通常被限制在 1412 °C(硅熔点)。

三是硅基3C-SiC器件加工的主要挑战之一是实现优质整流接触。硅基3C-SiC的肖特基势垒高度(SBH) 实验值通常低于1eV,远低于肖特基-莫特理论值。

所以,相比硅基3C-SiC,体块3C-SiC晶体更具潜在优点,主要包括离子注入和金属化等加工,而且单晶衬底还能够通过调整外延层厚度来实现更多器件耐压操作。

为此,据陈小龙团队的文献介绍,他们改变思路,转而采用TSSG液相法来生长3C-SiC单晶,这主要是基于2个方面的考虑:

首先,与PVT法相比,TSSG方法可以更容易地调整SiC和熔体之间的界面能量(通过改变它们的化学成分)。

其次,该团队在2021年就已经通过TSSG成功获得大于4英寸的4H-SiC晶体(1700~1800℃)。而他们这次的研发工作,证明了TSSG策略是行之有效的——成功生长了直径4英寸、厚度4-10毫米的大尺寸3C-SiC晶体。

那么,假设未来液相法实现了3C-SiC单晶的大规模制造,会有哪些商业意义?

首先,碳化硅器件的制造成本能够得到大幅降低,采用液相法理论上,晶体缺陷更少,根据中科院物理研究所研究员陈小龙此前的观点,液相法生长碳化硅的“最重要的一个好处就是晶体良率比较高,相当于变相地降低了每一片的成本”。

与此同时,3C-SiC的加工难度与硅类似,可以减少加工成本。

其次,成本更低的3C-SiC,未来将对600V-1200V电压段的功率器件市场产生巨大影响。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 功率器件
    +关注

    关注

    40

    文章

    1535

    浏览量

    89489
  • SiC
    SiC
    +关注

    关注

    27

    文章

    2442

    浏览量

    61407
  • 碳化硅
    +关注

    关注

    24

    文章

    2435

    浏览量

    47543

原文标题:液相法、3C-SiC!中科院又取得新成果

文章出处:【微信号:SiC_GaN,微信公众号:行家说三代半】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    中科院C++课件及范实例代码(研究生应,例程特经典)

    对象与类,构造函数与析构函数,堆与拷贝构造函数,静态数据成员与静态成员函数,继承,多态与虚函数,多重继承,友元,运算符重载,模板,异常处理等内容。中科院C++课件及范实例代码(研究生应,例程特经典)
    发表于 10-07 10:06

    中科院电子技术考研真题

    中科院电子技术考研真题
    发表于 08-07 15:04

    中科院剖析 LED怎样克服困难 

    无的放矢。”  从“十五”开始,中科院在产业链各关键技术环节上都进行了相应布局,取得了一系列原创性成果,在企协同创新方面也取得了诸多成绩。
    发表于 07-18 11:31

    0055《最优控制理论(中科院)》科学出版社-2003.pdf(4M)

    1000本电子专业书籍免费大放送https://bbs.elecfans.com/forum.php?mod=viewthread&tid=287358&fromuid=286650055《最优控制理论(中科院)》科学出版社-2003.pdf(4M)希望大家多顶顶,提升提升人气。
    发表于 01-14 16:19

    中科院建筑设计研究有限公司招聘照明设计师

    3dmax、photoshop、dialux及办公软件OFFICE、WORD、EXCEL; 5、具有独立完成项目设计的成功案例; 6、具有良好的团队协作意识,有项目管理经验者优先。中科院建筑设计
    发表于 10-23 09:56

    Banana PI开源项目与中科院先研举行开源硬件介绍交流活动

    本帖最后由 江口kk 于 2014-8-11 20:26 编辑 Banana PI开源项目与中科院先研举行开源硬件介绍交流活动LeMaker团队Banana Pi项目组日前与中国科学院深圳
    发表于 08-09 21:08

    中科院深耕网络摄像机领域

    。据悉,手立视Q系近日即将登陆京东众筹。 中科院聚焦网络摄像机领域 为打造符合消费与技术发展规律的全新一代网络摄像机,中科院在对国内外智能摄像机产品进行分析后,深入了解智能家居等领域,邀请数十位
    发表于 02-05 10:09

    中科院清库房-20V600A稳流电源

    ``如题 中科院清库房的设备 另有其他一些电子元器件。有想拿去玩玩的加微信qixiong225 论坛不常上 咸鱼链接https://2.taobao.com/item.htm?id=526428926106&spm=686.1000925.0.0.qjp7si ``
    发表于 02-17 16:14

    中科院海西研究泉州装备制造研究所现代电机控制与电力电子实验室招聘公告

    与团队合作精神;5. 有研发团队的管理工作经历优先。三、福利待遇 参照中科院海西研究(福建物质结构研究所)相应规定给予薪酬等待遇,年底有项目奖金; 符合泉州市及所属县(市、区)相关政策的创业创新
    发表于 06-30 16:27

    中科院苏州纳米所南昌研究 封装测试工程师

    芯片加工,MEMS传感器、光电子器件的研究背景或工作经验;4.动手能力强,善于学习沟通,吃苦耐劳,有团队合作精神; 5.有半导体相关工作2年以上工作经验优先考虑; 岗位待遇:中科院苏州纳米所南昌研究
    发表于 07-12 17:19

    中科院3D打印机CEST400|国产工业级3D打印机

    厂家的直径为1.75 毫米的ABS材料等。获得“中国国际高新技术成果交易会”优秀产品奖(可提供证书)关键词:中科院3D打印机CASET400国产工业级3D打印机 `
    发表于 08-10 17:27

    中科院主导的国产编程语言"木兰"负责人回应了!承认32位机器上,是基于Python二次开发!精选资料分享

    点击上方“码农突围”,马上关注这里是码农充电第一站,回复“666”,获取一份专属大礼包真爱,请设置“星标”或点个“在看”2020年1月15日,中国科学院计算技术研究所(以下简称中科院计算...
    发表于 07-21 06:13

    中科院发布“香山”与“傲来”两项开源处理器芯片

    449个分支(Fork)。 随后,中科院软件研究所副所长、总工程师武延军介绍了“傲来”RISC-V原生操作系统。他表示,作为“先导”专项亮点成果之一,“傲来”集成软件所的最新科研成果,通过构建开源软件
    发表于 05-28 08:43

    中科院的重大科技成果进入井喷期

    先导专项)时说,中科院的重大科技成果进入了井喷期。下面就随嵌入式小编一起来了解一下相关内容吧。 白春礼举了未来先进核裂变能—加速器驱动次临界堆嬗变系统专项的例子。
    的头像 发表于 01-31 07:42 2682次阅读

    半导体材料“3C-SiC”的晶体纯度和质量进展

    这次,合作团队使用 Air Water 开发的 3C-SiC 晶体,评估了热导率并进行了原子级分析。具体而言,首先,在硅(Si)基板上形成厚度100μm的3C-SiC。之后,去除 Si 以制造 3C-SiC 自支撑衬底。
    的头像 发表于 12-21 10:19 1906次阅读