0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

多孔硅基锂离子电池负极材料的设计和挑战

锂电联盟会长 来源:先进电源 2023-04-01 11:02 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

【研究背景】

在“碳达峰”和“碳中和”的时代背景下,清洁新能源的研究和开发已成为实现我国双碳目标的关键。然而,自然界中的许多可再生能源如风能、太阳能、潮汐能等,都是间歇性的。因此,储能系统,特别是碱金属离子二次电池,因其高效率和便携性而被认为是存储和传递这些能量的重要器件。

其中,锂离子电池由于其高能量密度和长循环寿命等突出优势已被广泛应用于电动汽车和各种便携式电子设备等。然而,目前商用的石墨负极因其低的容量已无法满足快速发展的市场需求。因此,开发高能量密度和长循环寿命的锂离子电池负极材料势在必行。

硅材料因其超高的理论容量、低的锂插层电位和自然丰度,被认为是下一代锂离子电池最具吸引力的负极材料之一。然而,体相硅材料在锂离子插层过程中通常会发生巨大的体积膨胀(>300%),无法承受膨胀过程中的应力行为,从而导致颗粒粉碎和电极脱落等。同时,单质硅固有的低导电性和迟滞的反应动力学也导致其倍率性能和循环稳定性都不太理想。

【工作介绍】

本文系统总结了多孔硅基材料作为锂离子电池负极的研究进展,旨在深入探讨其在储能领域的应用潜力。首先,按照锂离子存储机制,分析了体相硅和多孔硅材料的区别,并指明了后者的显著优势。随后依次介绍了“自上而下”和“自下向上”两种典型的制备方法;不同维度的材料结构调控以及硅/碳复合材料的制备策略等。重点讨论了从微孔到介孔再到大孔的硅基材料不同孔结构的精准调控,并结合理论分析,深入讨论了不同孔参数与材料/电极性能之间的构效关系。最后,总结了多孔硅基负极在全电池中的应用及其商业前景,同时指出了多孔硅基负极材料面临的机遇和挑战等。博士生程钟灵为本文第一作者,张海娇教授为通讯作者。

【主要内容】

1. 从体相硅到多孔硅

如图1a所示,多孔硅材料在电化学储能应用中表现出比体相硅材料更多的结构优势。首先,多孔硅一般具有较大的比表面积和更多的电化学反应活性位点,进而展示出更高的比容量。其次,多孔硅电极中丰富的孔隙度可以为其大的体积变化提供充足的缓冲空间,限制材料的应力向外膨胀。

研究表明,多孔硅的临界裂纹直径为1.52 mm,体积膨胀率为145%,可以在一定程度上缓解硅基材料的膨胀问题。再次,多孔结构可以保证电解液有效润湿并很好地渗透到电极材料中,促进电极-电解液界面的电荷快速转移。此外,具有互联通道的多孔硅可以在电化学反应中建立连续的电荷传输,缩短离子扩散路径,从而促进在大电流密度下高容量的获得。

虽然离子也可以在体相硅中扩散,但单一的途径和大的扩散电阻严重影响了其电化学性能。图1b给出了多孔硅和体相硅一些内在性质的综合比较。明显地,体相硅材料显示了大的体积膨胀、低的离子/电子电导率和容量保持能力差等问题,而多孔硅具有大比表面积和快的电荷迁移动力学等一系列独特优势,高孔隙率也使其能够更好地适应体积膨胀,从而获得优异的容量保持率和循环稳定性。

3160ad4c-d032-11ed-bfe3-dac502259ad0.png

图1.(a)多孔硅作为锂离子电池负极材料的结构优势示意图,(b)体相硅与多孔硅不同参数的综合比较。

2. 多孔硅的主要制备方法

作者主要总结了“自上而下”和“自下向上”两类多孔硅的典型制备方法。“自上而下”的合成方法因其成本低、操作简单和加工方便等优点,已成为当前制备多孔硅材料的主要方法之一,包括金属热还原法(镁热、铝热、锌热)和刻蚀法(干法刻蚀、湿法刻蚀)。“自下而上”的合成方法属于湿化学方法,具有操作简单、可控性好等优势。但是,由于大部分硅化合物的前驱体在用来制备多孔硅的过程中需要非常苛刻的反应条件(高温高压、强还原剂等)且反应过程通常涉及硅的自由基中间体,速度快且难以控制,不适合作为溶液反应的硅前驱体。因此,直接使用自下而上方法合成多孔硅的报道仍然很少,更多的是一些自下而上和自上而下结合的方法。

3. 不同维度多孔硅的结构设计

一般来说,纳米粒子/单元的组装按照维度可以简单地分为一维(1D)、二维(2D)和三维(3D),而不同维度和尺寸的结构具有不同的化学、物理和电化学性能。同时,由相同的纳米单元衍生出的1D、2D和3D聚集体也各有优势。在该部分,作者分别总结了不同维度多孔硅材料的制备方法、优势及分别存在的不足等。多维度的协同有助于提高多孔硅基负极材料的电化学储锂性能。

4. 多孔硅基复合材料的制备

尽管多孔硅材料可以显著提高锂离子的传输动力学,但硅固有的低导电性仍然严重阻碍了其作为锂离子电池负极的商业应用。作为对策,将高容量硅与导电性优异的碳质材料复合已成为该领域最受欢迎的方式之一。由于碳质材料具有优异的导电性和结构稳定性,通过涂覆或引入碳可以大大提高多孔硅负极的电化学性能。作者主要总结了近年来硅/碳复合材料的设计和合成方法,阐述了不同维度碳材料与多孔硅结合的优势及提升电化学性能的作用机理等。此外,还提及了多孔硅与金属、导电聚合物等的复合。

5. 微/宏观多孔结构及全电池的设计

孔隙率、电导率和颗粒尺寸被认为是目前提高硅基负极储能性能的三个关键因素。就硅材料而言,构建多孔结构是目前提升电化学性能的有效方法。设计这些结构的最终目标是获得具有低体积膨胀和高离子/电子导电性的电极材料,以便更好地应用于锂离子电池。然而,更多的合成工艺只是简单地造孔,而材料的孔结构参数对其性能有很大的影响。因此,对孔隙工程的深入研究有助于阐明孔结构与电化学性能之间的构效关系,可为今后多孔硅结构的设计提供指导和参考。

该部分重点从微观—材料制备过程中自身孔大小、形状、孔/壁厚比例;宏观—厚电极制备过程中的电极孔隙率与迂曲度之间的关系(图2),这两方面来阐述目前对于多孔材料及电极制备过程中存在的问题,并提出多孔硅电极的可控合成制备策略是具有深入研究价值的。

此外,目前多孔硅材料在实验室阶段的电化学评价主要以锂金属箔为参比正极的半电池为主。然而,在实际情况下,全电池性能是其一个关键参数,特别是在商业应用中。作者主要阐述了不同正极材料的优势及其对全电池性能的影响,包括层状氧化物型、尖晶石结构、橄榄石结构的正极材料,以及近年来广受关注的三元富镍正极材料。并提出研究全电池失效机制,特别是硅基负极失效机制是当务之急。同时,全电池的安全性和多功能性等其他问题也有待进一步解决。

31891c96-d032-11ed-bfe3-dac502259ad0.png

图2.(A)锂离子在不同电极结构下的传输路径示意图,(B)迂曲度、孔隙度与Deff的关系图,(C)不同Bergmann指数下电极数据的趋势雷达图







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3529

    浏览量

    80211
  • 电解质
    +关注

    关注

    6

    文章

    827

    浏览量

    21229
  • ICE
    ICE
    +关注

    关注

    0

    文章

    33

    浏览量

    19334
  • DEF
    DEF
    +关注

    关注

    0

    文章

    13

    浏览量

    6565

原文标题:综述| 上海大学张海娇团队AFM:多孔硅基锂离子电池负极材料的设计和挑战

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    纳米碳复合负极:锂电池高容量升级的核心材料

    电子发烧友网综合报道 在锂离子电池能量密度迭代的核心赛道中,纳米碳复合负极凭借材料的高储锂潜力与碳
    的头像 发表于 11-19 09:11 1977次阅读

    锂电工艺 | 快充锂离子电池电极材料前沿进展:从纳米结构设计到表面工程

    随着电动汽车续航里程的大幅提升,充电效率已成为制约其大规模推广的关键因素。高能量密度锂离子电池因电极材料倍率性能不足,难以实现安全快速充电。本文将深入探讨快充锂离子电池负极
    的头像 发表于 11-06 18:04 744次阅读
    锂电工艺 | 快充<b class='flag-5'>锂离子电池</b>电极<b class='flag-5'>材料</b>前沿进展:从纳米结构设计到表面工程

    锂离子电池热失控机制与安全挑战:从材料失效到热失控的连锁反应

    MillennialLithium锂离子电池热失控是一个典型的链式反应过程,可分为三个主要阶段:第一阶段:初始触发期当电池温度达到80-120℃时,负极表面的固态电解质界面膜开始分
    的头像 发表于 10-30 18:05 405次阅读
    <b class='flag-5'>锂离子电池</b>热失控机制与安全<b class='flag-5'>挑战</b>:从<b class='flag-5'>材料</b>失效到热失控的连锁反应

    锂离子电池是如何工作的?了解它的内部结构和制造过程

    锂离子电池已经成为现代生活中不可或缺的能源部件,无论是手机、笔记本电脑,还是电动汽车,都依赖它来提供电力。这种电池通过锂离子在正极和负极之间的移动来储存和释放能量,由于工作原理可靠且安
    的头像 发表于 09-23 18:03 2275次阅读
    <b class='flag-5'>锂离子电池</b>是如何工作的?了解它的内部结构和制造过程

    一文看懂锂离子电池的基础知识

    、工程应用与技术学习的关键内容。本文美能锂电将锂离子电池的技术信息转化为直观图像:以“结构-性能-工艺”为脉络,从电池内部正负极、隔膜、电解液的装配关系,到圆柱、方形
    的头像 发表于 09-04 18:02 744次阅读
    一文看懂<b class='flag-5'>锂离子电池</b>的基础知识

    锂离子电池的原理与材料全解析

    锂离子电池作为现代储能领域的核心技术,其高效稳定的能量转换能力支撑着新能源产业的快速发展。美能锂电作为行业创新企业,长期致力于锂离子电池材料研发与工艺优化,其技术突破为动力电池领域的革
    的头像 发表于 08-14 18:02 2295次阅读
    <b class='flag-5'>锂离子电池</b>的原理与<b class='flag-5'>材料</b>全解析

    锂离子电池技术演进:从材料革新到系统级突破

    MillennialLithium锂离子电池的发展历程充满了探索与突破。20世纪70年代,美国化学家约翰・B・古迪纳夫率先探索用锂作电极材料,为其发展奠定基础。80年代
    的头像 发表于 08-11 14:54 1039次阅读
    <b class='flag-5'>锂离子电池</b>技术演进:从<b class='flag-5'>材料</b>革新到系统级突破

    锂离子电池负极材料挑战负极的潜力

    我国锂离子电池负极材料市场规模随着新能源汽车的兴起及锂离子电池等产品的发展增长迅速,目前已有百亿规模。目前商业上能够实现大规模应用的负极
    的头像 发表于 08-05 17:55 914次阅读
    <b class='flag-5'>锂离子电池</b><b class='flag-5'>负极</b><b class='flag-5'>材料</b>的<b class='flag-5'>挑战</b>与<b class='flag-5'>硅</b><b class='flag-5'>基</b><b class='flag-5'>负极</b>的潜力

    锂离子电池隔膜质量检测与缺陷分析

    缺陷,可能引发电池热失控,甚至火灾,威胁安全。因此,锂离子电池隔膜的质量控制和技术改进是电池制造领域的关键。美能光子湾3D共聚焦显微镜,可快速地非接触测量各类材料
    的头像 发表于 08-05 17:55 804次阅读
    <b class='flag-5'>锂离子电池</b>隔膜质量检测与缺陷分析

    锂离子电池隔膜耐热性能的优化进展与挑战

    锂离子电池通常由正极、负极、隔膜、电解液和封装材料五个部分组成,其中隔膜作为电池的关键部件,主要起到防止电极接触、保证离子的输送和储存电解质
    的头像 发表于 08-05 17:53 960次阅读
    <b class='flag-5'>锂离子电池</b>隔膜耐热性能的优化进展与<b class='flag-5'>挑战</b>

    锂离子电池电解液浸润机制解析:从孔隙截留到工艺优化

    锂离子电池制造领域,美能光子湾始终怀揣着推动清洁能源时代加速到来的宏伟愿景,全力助力锂离子电池技术的革新。在锂离子电池制造过程中,电解液浸润是决定电池性能、循环寿命和安全性的关键步骤
    的头像 发表于 08-05 17:49 1829次阅读
    <b class='flag-5'>锂离子电池</b>电解液浸润机制解析:从孔隙截留到工艺优化

    锂离子电池多孔电极的电化学性能研究

    高端光学精密测量技术,深耕锂电、半导体等领域的材料性能评估,本文光子湾将聚焦锂离子电池多孔电极的电化学性能机制,解析结构参数与性能的关联规律,为高性能电极设计提供
    的头像 发表于 08-05 17:47 847次阅读
    <b class='flag-5'>锂离子电池</b><b class='flag-5'>多孔</b>电极的电化学性能研究

    FIB-SEM技术在锂离子电池的应用

    锂离子电池材料的构成锂离子电池作为现代能源存储领域的重要组成部分,其性能的提升依赖于对电池材料的深入研究。
    的头像 发表于 02-08 12:15 1023次阅读
    FIB-SEM技术在<b class='flag-5'>锂离子电池</b>的应用

    锂离子电池的正极为什么用铝箔负极用铜箔?

    随着锂离子电池应用越来越广泛,很多人对锂离子电池也越来越感兴趣,那么为什么在锂离子电池中正极要使用铝箔而负极要使用铜箔呢?其实关于这一问题主要有以下几方面的考量。 1-导电性和成本 在
    的头像 发表于 12-17 10:10 5593次阅读
    <b class='flag-5'>锂离子电池</b>的正极为什么用铝箔<b class='flag-5'>负极</b>用铜箔?

    智能化进程中的锂离子电池

    。1992年,锂离子电池实现商品化。   锂离子电池 锂离子电池是一种充电电池,它主要依靠锂离子在正极和
    的头像 发表于 12-06 10:45 1468次阅读