0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

低成本、高精度的电池测试设备数字控制方案

星星科技指导员 来源:TI 作者:Jared Liu 2023-03-21 09:40 次阅读

电池测试设备,是锂离子电池生产线后处理系统的重要环节,对于锂离子电池的质量至关重要。电池测试设备的核心功能是对锂离子电池进行高精度的恒流或恒压充放电,传统的控制方法以使用分立器件搭建的模拟控制方案为主。相比于传统的模拟控制方案,采用TI的C2000™为核心实现的数字控制方案,由于其低成本、高精度、更灵活、保密性较好等优点,将成为未来电池测试设备主流的发展方向。本文中,将详细介绍如何通过TI的C2000数字控制方案,有效降低系统成本,并保证极高的电流、电压控制精度。

1低成本

采用TI的C2000数字控制方案的典型结构如图 1所示:电流/电压放大器对电池充放电的电流/电压进行采样,通过模数转换器ADC将模拟信号转化为数字信号并送入C2000中,C2000根据恒流或恒压指令与采样信号进行环路计算,输出一定占空比的PWM从而调节MOSFET的开关,最终使得buck/boost变换器按照指令通过恒流或恒压的方式对锂电池进行充放电。

poYBAGQZCwaAELO8AABkBx8cwOA017.png

图1

相比于模拟方案,由于电压、电流指令和环路控制都在C2000中产生和完成,省去了高分辨率的数模转换器DAC和误差放大器,有效地降低了系统成本。TMS320F280049是具有100MHz主频、256KB 闪存的 C2000™ 32 位 MCU,通过高分辨率的16bit PWM,最多可以控制8个独立通道的同步buck/boost变换器。采用TMS320F280049的数字控制方案,比传统的模拟控制方案可以节省30%以上的BOM成本。

此外,由于锂离子电池在3C产品、电动汽车、储能等诸多领域都有广泛应用,各类锂离子电池的电流往往差别很大。这导致了电池测试设备若采用模拟控制,往往需要根据电流大小选取不同的硬件方案,增加了研发周期与设备成本。如果采用C2000的数字控制方案,则可以在不改变硬件的前提下,在小电流或大电流模式间自由切换:在小电流时,8各通道可以分别独立运行;在大电流时,则将多个通道并联运行,以输出更大的电流。

pYYBAGQZCwaADyJ7AAB1bGdQRJM146.png

图2

如图2所示,在多通道并联运行时,每个通道都将采用同一个恒压环路,恒流环路则各自独立,只需将输出并联后就可以实现更大的输出电流范围。因此,相比于模拟控制,采用C2000的数字控制方案,可以在不改变硬件的条件下适应更广泛的测试场景,大大减少了设备成本。

2 高精度

通过校准,电池测试设备往往可以除去大部分初始系统误差。剩余难以被校准的误差来源主要包括:电流检测电阻的温漂,电流、电压检测放大器的失调与增益温漂、输入共模电压变化带来的失调,ADC的非线性度,基准电压源的温漂。在本文中,按照±5°C的温度变化范围计算误差值。

电流检测电阻:

电流检测电阻的温漂是总系统误差的重要来源,对于CC控制,需要一个几毫欧并且低温度系数的高精度电流检测电阻。本文采用高精密、电流感应金属条 SMD 功率电阻器,检测电阻的阻值为5mΩ,温漂值为10 ppm。那么,由于电流检测电阻的温漂造成的误差为50ppm。

电流检测放大器:

为了减小大电流造成的温升和功率损耗,电流检测电阻的阻值一般较小,因此电流检测放大器的输入差分信号一般不超过几十毫伏,往往选择仪表放大器进行信号调理。仪表放大器的误差主要来源于以下两个方面:环境温度改变时,失调电压和增益的漂移;电池电压改变时,由于输入共模电压变化造成的失调电压。因此,在选择仪表放大器时,应该主要关注失调电压漂移、增益漂移、CMRR等参数。表1为TI主推的几款应用于电池测试设备的仪表放大器的关键参数:

表1

Specifications INA821 INA828 INA819 INA188
Vos max (µV) 35 50 35 55
Drift (Max) (µV/C) 0.4 0.5 0.4 0.2
Gain Error (% Max) 0.15 0.15 0.15 0.5
Gain drift (ppm/°C) (G=1) 5 5 5 5
CMRR (Max Gain) (Min) (dB) 140 140 140 118
GBW (MHz) (G=1) 4.7 2 2 0.6

INA821作为一款高精密、低漂移的仪表放大器,失调电压漂移最大值为0.4 µV/°C,那么±5°C温度偏移将会产生2 µV失调电压,即40ppm满量程误差;增益漂移为5 ppm/°C,那么±5°C温度偏移会产生25ppm误差;共模电压抑制比为140dB,那么输入共模电压范围在0~5V变化时,将产生0.5µV失调电压。在10A充电电流下,满量程采样电阻的电压信号为50mV,即输入共模电压变化带来10ppm满量程误差。

电压检测放大器:

电压检测放大器的误差来源同样主要来源于失调电压和增益的漂移,以及输入共模电压变化造成的失调电压。因此,在选择仪表放大器时,同样应该主要关注失调电压漂移、增益漂移、CMRR等参数。

TLV07是一款成本敏感型、低噪声、轨到轨输出、精密运算放大器,失调电压漂移的典型值为0.9 µV/°C,那么±5°C温度偏移将会产生4.5µV失调电压,即1ppm满量程误差;增益漂移主要受输入电阻与反馈电阻的漂移误差的影响,在这里取5 ppm/°C,那么±5°C温度偏移会产生25ppm误差。共模电压抑制比最小值为104dB,那么输入共模电压范围在0~5V变化时,将产生31.5µV失调电压,即6ppm满量程误差。

模数转换器及基准电压源:

模数转换器ADC的误差主要是由于非线性度和基准电压源的漂移造成的。ADS131M08是24位、32kSPS 、8通道同步采样的Δ-Σ高精度ADC,由于ADS131M08是差分输入,可以有效减小由于各通道间串扰引起的误差。从数据表中可以查到,ADS131M08的非线性度INL仅为7.5ppm满量程误差。如果采用内部基准电压源,温漂最大值为20 ppm/°C,那么±5°C温度偏移会产生100ppm误差。如果采用外部基准电压源REF2025,温漂最大值仅为8 ppm/°C,那么±5°C温度偏移误差将会降至40ppm。

误差汇总:

根据以上分析,将各误差来源造成的误差值汇总,即可计算得到在恒流、恒压控制时,电池测试设备的系统总误差如表2所示。可以看到,采用C2000的数字控制方案,电流和电压误差范围都在万二以内,达到了极高的控制精度。

表2

电流误差 电压误差
误差来源 满量程误差 误差来源 满量程误差
分流电阻温漂 50 ppm 分流电阻温漂 50 ppm
INA821失调温漂 40 ppm TLV07失调温漂 1 ppm
INA821增益温漂 25 ppm TLV07增益温漂 25 ppm
INA821 CMRR 10 ppm TLV07 CMRR 6 ppm
ADS131M08非线性度 7.5 ppm ADS131M08非线性度 7.5 ppm
REF2025 电压温漂 40 ppm REF2025 电压温漂 40 ppm
总误差 0.017% 总误差 0.013%

综上所述,在电池测试设备中采用TI的C2000数字控制方案,在降低系统成本的同时,可以保证极高的电流、电压控制精度,非常适合在各类电池测试方案中的应用。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3086

    浏览量

    76495
  • 放大器
    +关注

    关注

    142

    文章

    12416

    浏览量

    210018
  • 转换器
    +关注

    关注

    27

    文章

    8206

    浏览量

    141832
  • adc
    adc
    +关注

    关注

    95

    文章

    5651

    浏览量

    539474
收藏 人收藏

    评论

    相关推荐

    ADI解决方案助力锂电池测试设备设计

    解决方案都有一个共同之处:锂离子电池。 在电池生产环节中,其中一个非常重要的环节就是便评定电池容量和性能,为了达到这个目的就需要高功率、高效率和高精
    发表于 08-23 18:20

    低成本高精度定位方案是未来市场趋势,基于uwb高精度定位的案例分析

    突破,而成本也在产业规模化之后逐渐地降低,“高精度低成本”的定位方案无疑是未来市场的趋势。恒高EHIGH在多年来对技术高点的不懈追求和创新,已在各行业中积累了大量基于UWB超宽带定位
    发表于 11-09 15:19

    基于Microchip的BMS低成本高精度电流检测方案设计

    的电压,再根据欧姆定律,用测得的电压除以分流器的电阻值,从而得到电路中的电流值。而霍尔传感器检测方式虽然结构简单,但其测量值随温度的变化较大。为此,本文将介绍一款基于Microchip MCU、CAN接口和信号调理平台的低成本高精度的分流器检测
    发表于 07-12 08:00

    ADI锂离子电池测试设备的解决方案

    电池容量和性能。这之后还要执行电气测试,以便评定电池在工作中的容量,即额定值。对于锂离子电池制造中的这些电气测试,需要高功率、高效率和
    发表于 07-09 10:46

    基于Microchip的低成本高精度分流器检测方案分析

    分流器的电阻值就可以得到电路中的电流值。而霍尔传感器检测方式虽然结构简单,但其测量值随温度的变化较大。为此,本文将介绍一款基于microchip MCU、CAN接口和信号调理平台的低成本高精度的分流器检测方案,供大家参考与使用。
    发表于 08-06 06:05

    低成本双焊盘检测电阻实现高精度开尔文检测

    本文将描述一种替代方案,该方案采用一种标准的低成本双焊盘检测电阻(4焊盘布局)以实现高精度开尔文检测。
    发表于 02-03 06:37

    分享一款不错的低成本便携式的高精度噪声计设计方案

    请求大神分享一款不错的低成本便携式的高精度噪声计设计方案
    发表于 04-15 06:42

    如何设计一款适用于各种尺寸,电压和外形尺寸的电池测试

    的总体成本数字控制回路提供了在软件中测试更大或更小的电池的灵活性,而模拟解决方案则需要更改硬件。随着
    发表于 04-27 14:49

    基于C2000的电池测试设备数字控制方案

    为主。相比于传统的模拟控制方案,采用TI的C2000™为核心实现的数字控制方案,由于其低成本高精度
    发表于 11-07 06:01

    用ATMEGA48制作低成本高精度数字温度计

    用ATMEGA48制作低成本高精度数字温度计 不收积分,需要的看下
    发表于 11-23 18:08 41次下载

    以太网供电必备:推介两款低功耗、低成本PSE数字控制

    以太网供电必备:推介两款低功耗、低成本PSE数字控制
    的头像 发表于 07-02 11:34 4112次阅读
    以太网供电必备:推介两款低功耗、<b class='flag-5'>低成本</b>PSE<b class='flag-5'>数字控制</b>器

    microchip高精度、高效率、低成本电机控制解决方案

    责任编辑:xj 原文标题:高精度、高效率、低成本电机控制解决方案 文章出处:【微信公众号:贸泽电子设计圈】欢迎添加关注!文章转载请注明出处。
    的头像 发表于 12-29 10:19 2191次阅读

    低成本电池测试设备数字控制方案

    方法以使用分立器件搭建的模拟控制方案为主。相比于传统的模拟控制方案,采用TI的C2000™为核心实现的数字控制
    的头像 发表于 01-12 16:41 1276次阅读
    <b class='flag-5'>低成本</b>的<b class='flag-5'>电池</b><b class='flag-5'>测试</b><b class='flag-5'>设备</b><b class='flag-5'>数字控制</b><b class='flag-5'>方案</b>

    电池测试设备数字控制解决方案

    为主。相比于传统的模拟控制方案,采用 TI 的 C2000 为核心实现的数字控制方案,由于其低成本高精
    的头像 发表于 01-04 18:34 1345次阅读

    低成本高精度电池测试设备数字控制方案

    低成本高精度电池测试设备数字控制方案
    发表于 10-28 12:00 0次下载
    <b class='flag-5'>低成本</b>、<b class='flag-5'>高精度</b>的<b class='flag-5'>电池</b><b class='flag-5'>测试</b><b class='flag-5'>设备</b><b class='flag-5'>数字控制</b><b class='flag-5'>方案</b>