0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

详析交错式反相电荷泵

analog_devices 来源:未知 2023-03-01 16:25 次阅读

本文将借助ADP5600深入探讨交错式反相电荷泵(IICP)的实际例子。我们将ADP5600的电压纹波和电磁辐射干扰与标准反相电荷泵进行比较,以揭示交错如何改善低噪声性能。

01 商用交错式反相电荷泵

集成电路中使用IICP来生成较小的负偏置轨。ADP5600独特地将低噪声IICP与其他低噪声特性和高级故障保护功能结合在一起。

ADP5600是一款交错式电荷泵逆变器,集成了低压差(LDO)线性稳压器。与传统的基于电感或电容的解决方案相比,其独特的电荷泵级具有更低的输出电压纹波和反射输入电流噪声。交错作为一种低噪声概念很巧妙,但交错通道并不能解决所有噪声问题。为了实现真正的低噪声,需要一种专门设计的IC来实现IICP的低噪声优势,同时保持解决方案的小尺寸和高效率。

固定和可编程开关频率

许多反相电荷泵的工作频率为几百kHz。这种相对较低的频率限值要求相对较大的电容,并限制了频率杂散可以放置的位置。ADP5600可以在100 kHz至1.1 MHz的开关频率下工作,因而能在现代系统中高效使用。此外,该频率始终是固定的,不随输出负载而变化。开关频率变化(展频调制)通常用于提高电荷泵效率,但在噪声敏感的系统中可能会产生问题。

外部频率同步

许多低噪声系统需要将高幅度开关噪声置于规定的频带中,以使所产生的噪声对系统的影响最小。考虑到这一点,在噪声敏感系统中,转换器的工作频率是同步的,但在电荷泵逆变器中,同步很少见。相比之下,ADP5600可以同步到高达2.2 MHz的外部时钟

低压差稳压器

ADP5600的输入电压范围很宽,其电荷泵输出电压可能过高,无法为低压电路供电。因此,ADP5600内置了一个LDO后置稳压器。它还有一个以正电压为基准的电源正常信号引脚,以便在LDO输出处于稳压状态时轻松进行电源时序控制。

故障保护

最后,ADP5600具有一套全面的故障保护特性,适合于稳健的应用。保护特性包括过载保护、短路飞跨电容保护、欠压锁定(UVLO)、精密使能和热关断。另一个新颖的特性是飞跨电容限流,它也能降低飞跨电容充电时的峰值电流尖峰。

02 ADP5600测试数据

之前我们从理论上证明了与非交错解决方案相比,IICP架构可显著改善纹波。为简洁起见,但是其中说明的推导是理想化的,忽略了寄生效应、布局依赖性(IC和PCB)、时序失配(即不完美的50%振荡器)和RDS失配。这些因素导致与计算和测量的电压纹波有些偏差。一如既往,最好将ADP5600投入使用,观测其性能,并使用推导的方程式指导电路优化以获得最佳性能。

此处使用标准ADP5600评估板,但插入了RFLY,并修改了CFLY和COUT的值。此外,我们使用ADP5600的SYNC特性来改变开关频率。图1所示框图表明,各电荷泵以该SYNC频率的一半进行开关。也就是说,fOSC= ½ fSYNC

图3和图4分别显示了在相同条件下运行时,交错式和非交错式反相电荷泵的输出电压纹波。

2826fc54-b809-11ed-bfe3-dac502259ad0.svg

图1.ADP5600交错式反相电荷泵简化框图。

2850f73e-b809-11ed-bfe3-dac502259ad0.svg

图2.ADP5600交错式反相电荷泵测试设置。

286a2f2e-b809-11ed-bfe3-dac502259ad0.svg

图3.ADP5600 IICP输出电压,VIN= 6 V,COUT= CFLY= 2.2 μF,fOSC= 250 kHz,ILOAD= 50 mA

2887bcba-b809-11ed-bfe3-dac502259ad0.svg

图4.标准反相电荷泵输出电,VIN= 6 V,COUT= CFLY= 2.2 μF,fOSC= 250 kHz,ILOAD= 50 mA

在这些条件下,ADP5600的输入和输出电压纹波几乎比传统反相电荷泵低14倍。IICP的输出(或输入)电压纹波由下式给出:

28b2fec0-b809-11ed-bfe3-dac502259ad0.svg

使用式1,并将实际值代入ROUT和RON,便可比较计算出的和测量到的输出电压纹波。表1给出了多种测试配置下的结果,并指出了相对于非交错式电荷泵方案的改善幅度。

28cae8be-b809-11ed-bfe3-dac502259ad0.png

表1.不同使用案例下的VOUT纹波;VIN= 12 V, ILOAD= 50 mA, RON= 2.35 Ω** 使用的是COUT和CFLY的实际电容值(电容在电压下会降额),而不是标称值。

表1显示了交错电压纹波与式1的预测非常吻合。另外还显示了其相对于标准的非交错式反相电荷泵的改善幅度。此表中的某些设置还包括与CFLY串联的附加外部电阻RFLY。结果表明,RFLY进一步降低了电压纹波,但要以电荷泵输出电阻为代价。

除输出电压纹波外,IICP的电磁辐射骚扰与标准电荷泵相比也有所改善。为了衡量这一点,将一根25 mm天线放在评估板上(图5),并测试了多种配置。图6显示了这样一种配置与标准的非交错式电荷泵逆变器的比较。IICP拓扑可将第一和第三开关谐波的噪声降低12 dB至15 dB。

28d30dd2-b809-11ed-bfe3-dac502259ad0.jpg

图5.采用ADP5600评估板的电磁辐射干扰测试设置

2909a112-b809-11ed-bfe3-dac502259ad0.svg

图6.电磁辐射干扰, VIN= 12 V, ILOAD= 50 mA, CFLY= COUT= 2.2 μF, fSYNC= 500 kHz。绿色 = 标准,蓝色 = IICP。

03 IICP应用示例

数据转换器、RF放大器和RF开关需要低噪声电源。这些系统中的电源设计面临的主要挑战是:

  • 功耗和高温运行

  • EMI抗扰度和低EMI贡献

  • 输入电压范围大

  • 解决方案尺寸和面积应最小化

为了说明IICP的完整设计和优势,我们考虑一个为RF放大器、RF开关和相控阵波束成型器供电的应用。该应用包含在ADTR1107数据手册中,图7复制自其中。此示例需要几个大功率正电压轨——在这里是感性降压转换器的工作。另外还需要两个负电压轨:AVDD1和VSS_SW。

291e9356-b809-11ed-bfe3-dac502259ad0.svg

图7.ADAR1000加上四个ADTR1107电源轨

2932cbd2-b809-11ed-bfe3-dac502259ad0.svg

图8.ADP5600和LT3093用于为AVDD1和VSS_SW供电

ADAR1000使用AVDD1为VGG_PA和LNA_BIAS生成低噪声偏置轨。AVDD1为–5 V、50 mA,VSS_SW为ADTR1107中RF开关的–3.3 V、<100 μA电源轨。每个ADAR1000使用四个ADTR1107,因此–3.3 V电源轨最大汲取1 mA电流。通常,这些系统的电源轨为12 V。

ADP5600是从12 V电压产生–5 V、50 mA和–3.3 V、1 mA电源轨的理想选择,因为它实现了低输入和输出电压纹波以及低电磁辐射干扰。此外,它能同步宽范围的开关频率,因而允许将开关噪声放在对系统影响最小的位置。图8显示了最终设计。

LT3093 是一款超低噪声LDO线性稳压器,支持高电压,允许将ADP5600电荷泵输出(CPOUT)直接连接到其输入。其–5 V输出由SET引脚上的电阻设置,当AVDD1电源轨符合要求时,可编程的电源良好引脚可以通知其他系统。ADP5600的LDO调节电流低得多的VSS_SW轨。尽管没有LT3093那么低的噪声或那么高的电源抑制比(PSRR),但它能够为VSS_SW提供稳定的电源轨。所有三个轨(电荷泵、AVDD1和VSS_SW)的输出电压纹波如图9所示。

294c00b6-b809-11ed-bfe3-dac502259ad0.jpg

图9.电荷泵输出电压纹波,VIN= 12 V,COUT= 10 μF(标称值),CFLY= 2.2 μF(标称值),fSYNC= 1 MHz (fOSC= 500 kHz),ILOAD= 50 mA

04 结论

本文利用ADI公司的新产品ADP5600构建并测试了一个完整解决方案,并使用数学模型对该解决方案进行了优化。另外还将其传导发射和电磁辐射干扰与标准反相电荷泵进行了比较。在某些情况下,与标准电荷泵逆变器相比,其改善幅度达到18倍,这对于满足现代精密和RF系统的低噪声要求非常重要。

ADP5600

  • −0.505 V,−1.5 V,−2.5 V,−5 V

  • 100 kHz 至 1 MHz

  • 输入电压2.7 V 至 16 V

  • 最大输出电流:−100 mA

  • 集成功率 MOSFET

  • 四个 LDO 可选输出电压选项

  • 可调输出电压范围:−0.505 V 至 –VIN+ 0.5 V

  • 可编程电荷泵开关频率范围

  • 通过 SYNC 引脚实现频率同步

  • 精密启动和电源正常工作

  • 软启动

  • 输出短路及过载保护

  • 电荷泵续流电容器短路保护

  • 集成 LDO 输出放电电阻

  • 16 引脚 4 mm × 4 mm LFCSP

29662112-b809-11ed-bfe3-dac502259ad0.gif  查看往期内容↓↓↓


原文标题:详析交错式反相电荷泵

文章出处:【微信公众号:亚德诺半导体】欢迎添加关注!文章转载请注明出处。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 亚德诺
    +关注

    关注

    6

    文章

    4680

    浏览量

    15781
收藏 人收藏

    评论

    相关推荐

    电荷泵工作原理

    电荷泵能够产生高于直流输入电压的直流输出电压,甚至可以反极性输出电压。 电路简化图如上,在一个工作周期内,前半个周期输入开关闭合时,输入电压对电容C1充电至输入值;在后半个周期内,输入开关断开,输出
    发表于 01-27 14:33

    电荷泵的转换效率

    电荷泵是一种将电荷从低电势转移到高电势的装置。它在电子学中被广泛应用,如用于电信号的增益、时钟信号的产生和高压电力输送等。在本文中,我们将详细介绍电荷泵的转换效率以及相关的参数、设计和优化。 首先
    的头像 发表于 12-18 17:47 615次阅读

    ad6676配置过程中,vco校准可以过,电荷泵校准过不了,pll无法锁定怎么解决?

    项目中给ad6676一个100m时钟,通过内部vco使其时钟锁在3.2G,在配置过程中通过读取0x2bc寄存器时发现,vco校准可以过,电荷泵校准过不了,pll无法锁定,寄存器配置基本按照手册给的顺序,请大神给点建议
    发表于 12-07 07:45

    深度解析电荷泵设计工作原理

    电荷泵是一种增加或反转DC电压的技术。例如,+5V可以转换为+10V或-5V(或更高/更低的值)。与…相比升压转换器电荷泵需要更少的元件和更少的PCB空间,并且更便宜;然而,电荷泵的局限性在于它们
    发表于 11-27 16:18 425次阅读
    深度解析<b class='flag-5'>电荷泵</b>设计工作原理

    电荷泵与恒流源的工作原理解析

    在这篇文章中,我们将介绍电荷泵(CP)和恒流源的工作原理。
    的头像 发表于 11-22 14:39 674次阅读
    <b class='flag-5'>电荷泵</b>与恒流源的工作原理解析

    FS2115D SOT23-6 低噪声、稳压电荷泵 DC/DC 转换器

    (VIN 和 VOUT 处有一个跨接电容器和两个小型旁路电容器),非常适合小型电池供电应用。 新的电荷泵架构将恒定的开关频率维持在零负载,并降低输出和输入纹波。FS2115D 具有热关断功能,可以承受从
    发表于 11-21 12:12

    为什么在实际应用中很少看到单独的电荷泵升压芯片呢?

    为什么在实际应用中很少看到单独的电荷泵升压芯片呢? 在实际应用中很少看到单独的电荷泵升压芯片,主要是由于以下几个原因: 1. 效率相对较低:电荷泵升压芯片的工作原理是通过电容的充放电来实现电压升高
    的头像 发表于 11-10 16:01 483次阅读

    如何设置电荷泵的极性?

    如何设置电荷泵的极性? 电荷泵是一种在电路中生成能够提高电压的设备。其原理是利用介质的电容性质将电荷传输到一个电容器中,并将其放大以供使用。在电荷泵的电路中,有两个电极,分别为正极和负
    的头像 发表于 10-30 10:46 319次阅读

    CMOS电荷泵锁相环电路图设计

    电子发烧友网站提供《CMOS电荷泵锁相环电路图设计.pdf》资料免费下载
    发表于 10-09 14:57 0次下载
    CMOS<b class='flag-5'>电荷泵</b>锁相环电路图设计

    电荷泵的工作原理及特性

    电荷泵(charge pump),也称为开关电容式电压变换器,是一种利用所谓的“快速”(flying)或“泵送”电容(而非电感或变压器)来储能的DC-DC(变换器)。
    的头像 发表于 09-05 15:02 1.2w次阅读
    <b class='flag-5'>电荷泵</b>的工作原理及特性

    讲一下电荷泵升压的基本原理

    电荷泵基于一个物理学的基本原理:在闭合电路中来回流动的电荷不会消失。
    的头像 发表于 08-15 15:38 1948次阅读
    讲一下<b class='flag-5'>电荷泵</b>升压的基本原理

    电荷泵的工作原理是什么?电荷泵拓扑结构介绍

    电荷泵是一种增加或反转直流电压的电压变换器。例如,+5V可以转换为+10V或-5V(或更高/更低的值)。
    发表于 07-19 11:39 2171次阅读
    <b class='flag-5'>电荷泵</b>的工作原理是什么?<b class='flag-5'>电荷泵</b>拓扑结构介绍

    DAC供电的电荷泵变化为负轨

    本应用笔记给出了一个可调负电源,该电源使用由8位串行输入数模转换器(DAC)控制的反相倍增电荷泵。该电路具有负电源轨,适合用作传感器偏置、LCD对比度偏置或压控振荡器(VCO)调谐电源。
    的头像 发表于 06-26 10:24 391次阅读
    DAC供电的<b class='flag-5'>电荷泵</b>变化为负轨

    白光LED电荷泵的电路板布局指南

    对于许多白光LED电荷泵IC来说,印刷电路板(PCB)布局很简单。但大电流电荷泵和具有许多引脚的电荷泵(如MAX1576)有更严格的要求。讨论了PCB布局和设计指南。
    的头像 发表于 06-25 16:15 377次阅读
    白光LED<b class='flag-5'>电荷泵</b>的电路板布局指南

    白光LED电荷泵电路板布局指南

    大多数白光LED电荷泵IC的印刷电路板(PCB)布局非常简单,但对于大电流电荷泵或引脚数较多的电荷泵(如MAX1576)来说,线路板布局需要遵循一些规则。本文给出了一个PCB布局实例,并讨论了相关的设计规则。
    的头像 发表于 06-25 11:14 436次阅读
    白光LED<b class='flag-5'>电荷泵</b>电路板布局指南