0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

内核并发消杀器KCSAN技术分析

Linux阅码场 来源:内核工匠 2023-02-25 09:12 次阅读

一、KCSAN介绍

KCSAN(Kernel Concurrency Sanitizer)是一种动态竞态检测器,它依赖于编译时插装,并使用基于观察点的采样方法来检测竞态,其主要目的是检测数据竞争。

KCSAN是一种检测LKMM(Linux内核内存一致性模型)定义的数据竞争(data race)的工具,同时它也可以控制报告哪种类型的数据竞争。

KCSAN知道LKMM定义的所有标记原子操作,以及LKMM尚未提到的操作,例如原子位掩码操作(bit mask)。

KCSAN扩展了LKMM,例如通过提供data_race()标记,来表示存在数据竞争和缺乏原子可能性。

1.1 LKMM(Linux内核内存一致性模型)

Linux内核内存模型目前在源代码树中的memory-barrier.txt和atomic_ops.txt文件中有非正式的定义。包含以下组成部分:

变量访问(Variable Access)

使用READ_ONCE()、WRITE_ONCE()和ACCESS_ONCE()宏来保护从共享(但非原子)变量的加载和存储;

内存屏障(Memory Barriers)

一类同步屏障指令,是CPU或编译器在对内存随机访问的操作中的一个同步点,使得此点之前的所有读写操作都执行后才可以开始执行此点之后的操作。比如barrier、smp_mb/smp_wmb/smp_rmb等;

锁操作(Locking Operations)

原子操作(Atomic Operations)

控制依赖(Control Dependencies)

Linux内核提供了一个有限的控件依赖的概念,在某些情况下对依赖控件的存储进行优先加载;

RCU宽限期授权关系(Grace-Period Relationships)

允许更新者等待所有已经存在的读侧临界区完成,再回收旧的资源;

C11原子原语 (C11 Atomics)

将原子原语的实现委托给编译器;如果多个体系结构采用这种方法,将减少体系结构特定代码的数量。

1.2 数据竞争

为什么要关心数据竞争?

C语言的发展独立于并发性。如果给定的变量或访问没有任何特别之处,则变量只会在响应当前线程的存储时发生变化。

C语言和编译器的进化对并发性不敏感

优化编译器正变得越来越丰富

因此,编译器可以并且使用各种优化,包括负载融合、代码重新排序和许多其他可能导致并发算法故障的优化。

读取拆分(单次访问多次读取)

存储拆分(单次访问多次写入)读取融合(编译器直接使用上一次对这个变量的load结果,而不是真正再去load一次)

存储融合(编译器优化写入变量流程,不再真实写入)

代码重排(把一些类似的计算归在一起,节省占用的寄存器,改善现代超标量微处理器里面各个运算单元的利用效率)

虚拟读取(编译器优化会导致多次读取,导致后续加载异常)

虚拟存储(编译器优化会导致多次存储,导致后续存储异常)

.....

因此需要告诉编译器并发代码,Linux提供内存一致性模型,也提供检查方法解决此类问题。

1.2.1 访问方式

普通访问

标记访问

5917632a-b463-11ed-bfe3-dac502259ad0.png

1.2.2 同步冲突访问的检测条件

在访问同一个地方并且至少有一个是写操作

至少有一个是普通访问(比如x+42)

以下线程打钩的是标准做法;打叉的是可能存在数据竞争的情况。

592bf27c-b463-11ed-bfe3-dac502259ad0.png

1.2.3 哪些不属于数据竞争

例如:使用不对称的锁机制,并且使用READ_ONCE/WRITE_ONCE标记访问。

5958056a-b463-11ed-bfe3-dac502259ad0.png

二、依赖与配置方案

2.1 版本支持

KCSAN支持GCC/CLANG编译,需要GCC版本11,CLANG 12以上版本。

x86_64: >=5.8 ARM64: >=5.17

597262a2-b463-11ed-bfe3-dac502259ad0.png

599f2a3a-b463-11ed-bfe3-dac502259ad0.png

2.2 KCSAN工具链支持

cc-option,-fsanitize=thread --param tsan-distinguish-volatile=1

59ae3822-b463-11ed-bfe3-dac502259ad0.png

2.3 配置选项支持

59d02af4-b463-11ed-bfe3-dac502259ad0.png

三、工作原理与触发条件

3.1 使用方式

检查未标记读取是否写入竞争,会持续扫描内核的主要分支,在访问的内存位置上设置观察点,挑出导致数据争用的数据,并将其报告给内核日志。

●用“软观察点”查找竞争

〇设置观察点和失速通道;

〇如果监测点已经存在,那么竞争检查将照常进行;

〇如果值改变了--> 竞争;

〇失速通道随机延迟,增加观察竞争状态的机会;

默认值:任务[1,80]us,中断[1,20]us。

●为所有检测内存访问设置观察点

〇 注释标记访问,仅用于检查非标记访问是否存在观察点;

KCSAN从不在标记的访问上设置观察点;

如果对并发访问的变量的所有访问都正确地标记了,KCSAN将永远不会触发观察点,因此永远不会报告访问。

●采样: 周期性建立观察点

〇默认值:平均2000次访问。

3.2 KCSAN软观测点

基于地址页索引

〇可以溢出到相邻槽。

〇使用索引确保报告元数据给匹配的生产者/消费者。

具有灵活、可缩放的特点,以数组的形式存放。

59e492a0-b463-11ed-bfe3-dac502259ad0.png

代码片段如下:

入口函数check_access,在check_access数据地址、长度、类型;在check_access函数执行find_watchpoint判断。需要检测的ptr已经插桩编译。

5a0b8e8c-b463-11ed-bfe3-dac502259ad0.png

3.3 KCSAN 运行流程

进入check_access函数,格式描述包含数据指针、长度、读写类型;

确认是否需要观测,需要满足至少一个写操作且为普通访问;

如果判定需要观测,加入观察列表;

延时一段时长,查看是否有访问、变更数据等情况;如果有,则生产数据表,并打印数据到控制台;如果没有则退出;

在步骤3,如果未发现合适的观测点,则该数据运行流程退出

5a1fad18-b463-11ed-bfe3-dac502259ad0.png

3.4 ASSERT检测机制

KCSAN提供有一种断言检测机制,检查在数据竞争模型以外的情况下提供竞争检测;

5a442b5c-b463-11ed-bfe3-dac502259ad0.png5a5947e4-b463-11ed-bfe3-dac502259ad0.png

3.4.1 ASSERT集合

5a671eaa-b463-11ed-bfe3-dac502259ad0.png

3.5 KCSAN特点

5a792366-b463-11ed-bfe3-dac502259ad0.png

四、测试套件

4.1 KUNIT测试模型

KCSAN提供KUNIT的支持

创建多个access_thread线程用于测试用例函数的调用接口

挂接console跟踪点,该跟踪点监控串口输出数据;如果有数据竞争报错,可以捕获并判断;

启动测试用例接口函数,实现测试函数的挂接并提供超时判定(缺省执行500毫秒);

在执行超时以后,判断输出是否与预想一致;并给出判断结果。

5a977a00-b463-11ed-bfe3-dac502259ad0.png

4.2 测试条件

1. 配置CONFIG_KCSAN_KUNIT_TEST=y使能KUNIT

2. KCSAN功能正常开启

4.3 测试环境

QEMU Linux 6.11 core 4 GCC11

测试覆盖:

1. 不同条件下的数据竞争data_race

5ab9ae04-b463-11ed-bfe3-dac502259ad0.png

2.断言函数数据竞争assert_exclusive_x

5ad080c0-b463-11ed-bfe3-dac502259ad0.png

3. barrier/lock判定

5ae3eeda-b463-11ed-bfe3-dac502259ad0.png

五、过程与案例分析

5.1 KCSAN启动过程

1. 在完成KCSAN配置后,系统启动时有“kcsan:enable early”打印:

5b0313aa-b463-11ed-bfe3-dac502259ad0.png

2.后台会实时进行观测点的监控与比对,如果比中会有”BUG:KCSAN”控制台打印来描述数据竞争的信息;这些信息包括调用函数、数据竞争地址、CPU号、进程号等;可在不同的测试场景进行压力测试;

5b11b540-b463-11ed-bfe3-dac502259ad0.png

3.在运行过程中,查看“KCSAN kernel debug”节点查看当前的状态,这些状态信息包括观测点、数据竞争、ASSERT报错等一系列信息;

5b223af0-b463-11ed-bfe3-dac502259ad0.png

5.2 案例一

描述:IGMP协议timer超时与事件函数在读写mr_ifc_count变量的数据竞争

net: igmp: fix data-race in igmp_ifc_timer_expire()

5b4449d8-b463-11ed-bfe3-dac502259ad0.png

解决办法:

1. igmp_ifc_event/ igmp_ifc_timer_expire函数在读写mr_ifc_count变量存在数据竞争,需要使用LLKM 访问保护;

2. 修改调用mr_ifc_count点,使用READ_ONCE/WRITE_ONCE保证编译器的一致性;

3. mr_ifc_count和in_dev->mr_ifc_count值不等时启动重传机制;

5b5f548a-b463-11ed-bfe3-dac502259ad0.png

5.3 案例二

描述:在taskstats_exit()中分配和测试任务统计时,会有一个竞争在读写sig->stats

When assiging and testing taskstats in taskstats_exit() there's a race when writing and reading sig->stats

5b6e8482-b463-11ed-bfe3-dac502259ad0.png

解决办法:

1. 结构体成员sig->stats存在数据竞争,需要使用LLKM访问保护;

2. smp_load_acquire/smp_store_release函数解决CPU数据同步和编译器同步问题,适用于同一个函数内部的数据竞争;

5b854ef6-b463-11ed-bfe3-dac502259ad0.png

六、总结

本文从工作原理、运行流程、测试方式等多个方面介绍了KCSAN,旨在让读者能够对KCSAN运行有一个直观的认识,利用KCSAN在产品中解决一些数据竞争问题;数据竞争是一个复杂问题,用KCSAN能帮助大家快速找到数据竞争问题,进而寻找方法解决或规避,本文更多传递是一种发现和解决此类问题的思路。

消杀器技术在不断地迭代和更新,也让大家多一份探寻世界、改变世界的机会;借此机会,站在巨人的肩膀上,让大家看得更远、走得更远,愿大家都有一个美好的明天。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • C语言
    +关注

    关注

    180

    文章

    7530

    浏览量

    128687
  • 编译器
    +关注

    关注

    1

    文章

    1577

    浏览量

    48614
  • LINUX内核
    +关注

    关注

    1

    文章

    311

    浏览量

    21389
  • rcu
    rcu
    +关注

    关注

    0

    文章

    19

    浏览量

    5374

原文标题:内核并发消杀器(KCSAN)技术分析

文章出处:【微信号:LinuxDev,微信公众号:Linux阅码场】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    小七免论坛vip 2013源码免培训课程

    小七免论坛vip 2013源码免培训课程目录(今日免key发布)小七免论坛vip 2013源码免培训课程解压密码:www.fanlu8.com如果www.fanlu8.com密
    发表于 10-05 17:35

    微机谐装置

    阻断状态,对系统无任何影响。当PT开口三角电压大于30V时,说明系统出现故障,本装置对电压互感开口三角电压进行数据采集,然后对数据进行分析,判断出当前的故障状态;如果是某种频率的铁磁谐振,迅速启动
    发表于 07-16 11:23

    技术分享:明德扬按键抖的原理和基于fpga的抖设计

    本帖最后由 明德扬吴老师 于 2017-8-2 11:45 编辑 按键抖1功能概述按键开关是各种电子设备不可或缺的人机接口,如电脑的键盘等。实际应用中,按键开关通常为机械式弹性开关。当机械点
    发表于 08-02 10:38

    语音通讯系统中的噪,回音技术-富迪FMXX系列噪芯片介绍

    语音)。富迪芯片将主麦克风和参考麦克风的信号进行分析比较,分离出非稳态噪音并进行抑制,在输出端得到清晰的通话语音信号。富迪全系列回音、噪、语音识别芯片。并提供完整的售后技术支持**
    发表于 11-28 11:26

    零传播、零扩散,EHIGH恒高UWB技术疫情防控系统!

    。UWB技术如何做好密集区域预防措施?人员密集区热力图分析:对于人员较为密集、流动性大的区域进行重点以及加强通风换气和垃圾处理,最大限度切断一切飞沫传播及接触式传播的可能。 UWB
    发表于 02-21 19:36

    Python中的并行性和并发分析

    。(Python在处理并发方面不是很出色),但是它做得相当不错。  1.多线程:运行不同/多个线程以在单个处理上执行任务。多线程对于执行IO绑定任务(例如—同时向服务发送多个请求等)确实非常有用。创建的每个
    发表于 08-21 17:45

    软件抖电路中存在的不足是什么?

    什么是抖电路?软件抖电路中存在的不足是什么?按键抖电路瞬态分析和设计
    发表于 05-06 07:50

    ATC'22顶会论文RunD:高密高并发的轻量级 Serverless 安全容器运行时 | 龙蜥技术

    一些技术,如预热容器来缓解容器冷启动,但爆发性负载依旧会非常容易的击穿预热容器池。对于无服务平台来说,支持高并发启动的能力至关重要。**高密:**大量容器共存于工作节点中,为保证极致弹性和资源利用率
    发表于 09-05 15:18

    Linux环境并发服务器设计技术研究

    讲述并发服务器设计的主要技术,包括多进程服务器、多线程服务器和I/ O 复用服务器,同时对以上服务器技术的性能进行了简要分析,给出了在Linux 操作系统下使用socket 实现
    发表于 04-24 10:02 16次下载

    内核并发通信的研究

    提出了一种内核并发消息通信机制。该机制采用对象传送协议和动态线程池技术,并通过会话控制完成数据的收发过程,将线程池设计为二级阻塞队列来暂缓线程的撤销过程,
    发表于 05-26 21:08 6次下载

    Android内核分析

    介绍Android 移动平台系统架构,通过对Android 源代码的分析,将其与标准Linux 内核(2.6.27)源代码相比较,详细解析Android 内核的功能更新,分析讨论And
    发表于 10-29 16:17 115次下载

    并发程序动态分析基础技术综述

    并发错误难触发、难调试、难检测.为应对这一挑战,已有动态程序分析技术通过观测或控制并发程序执 行实现其质量保障.由于并发程序不确定性主要来自
    发表于 12-30 17:37 0次下载

    Android内核的简单分析

    本文档内容介绍了基于Android内核的简单分析,供参考
    发表于 03-16 14:05 6次下载

    内核与宏内核的比较与分析

    混合内核实质上也是微内核,而外内核是一种比较极端的设计方法,目前还处于研究阶段,所以我们就着重讨论宏内核与微内核两种
    发表于 03-17 16:05 11次下载
    微<b class='flag-5'>内核</b>与宏<b class='flag-5'>内核</b>的比较与<b class='flag-5'>分析</b>

    内核并发消杀器KCSAN技术分析

    KCSAN(Kernel Concurrency Sanitizer)是一种动态竞态检测器,它依赖于编译时插装,并使用基于观察点的采样方法来检测竞态,其主要目的是检测数据竞争。
    的头像 发表于 03-02 09:43 954次阅读