0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

石墨烯反点纳米带横向异质结带阶匹配及输运特性

鸿之微 来源:鸿之微 2023-02-21 16:34 次阅读

0 1引言

近年来,具有原子尺度厚度材料的发现和研究为设计各种二维异质结构提供了新的可能性。通过调控异质结的结构构型和组成异质结的材料间的带阶匹配,能够使异质结的电子性质得到极大的改变,甚至能够得到与其组分性质完全不同的新的电子性质。因此,对于二维材料异质结的研究变得尤为重要。

根据其物理结构,二维材料异质结可以分为纵向堆叠形成的纵向异质结和横向拼接形成的横向异质结。与纵向异质结相比,横向异质结具有清晰的表/界面,并且其晶格生长方向可以通过实验参数很好地控制,这使得有横向异质结构成的电子及光电器件具有更加优异的性能。

目前,包括h-BN/石墨烯,TMDs/石墨烯和TMDs/TMDs等在内的多种二维横向异质结(Two-dimensional lateral heterostructure,2DLH)已经在实验上被成功的合成,并被证明在FET、谐振器及逻辑电路等方面具有极高的应用潜力。

其中,由MoS2/石墨烯横向异质结构构建的FET具有极低的固有延迟,接近109的开关频率和高达6 µs的最大跨导率[192];采用光刻法制备的石墨烯/h-BN异质结构的载流子迁移率可高达2000 cm2v−1s−1。由于具有易于剥离并被转移到其他基板上的优点,它十分有利于作为谐振器,并被用作逻辑电路中的滤波器

本研究通过第一性原理计算,使用了三种不同的方法对GANR的电子性质进行了调制,并研究了由其所构造的二维材料异质结的输运性质。通过有效地调控纳米孔的形状、纳米带的宽度和杂质的掺杂位点及浓度,可以同时实现具有I型和II型带阶匹配的二维材料异质结。

本研究分别计算了两种典型的I型和II型二维材料异质结的输运特性。结果表明,2DLH的I-V特性与基于带阶匹配的结果非常一致。我们的研究结果提出了一种基于单一材料的新型维材料异质结的替代方法,在高性能电子器件中具有极高的应用潜力。

02成果简介

在计算过程中,我们使用了基于Monkhorst-Pack方法撒点的1×1×11的格子。截断动能设置为500 eV。在结构优化过程中,原子位置得以完全弛豫直到他们之间的最大能量小于 10-5eV,最大力小于 0.01 eV Å-1为止。我们使用了GGA交换关联泛函和基于PBE的赝势。

所有的结构在z方向都设置了20 Å的真空层从而防止面与面之间发生相互作用。所有在边缘的碳(C)原子的悬挂键都被氢(H)原子钝化,从而防止引入额外的自旋。对于所有的体系,其导带底和价带顶的位置均通过将真空能级设为0 eV来匹配。

在电子和热输运特性的计算中,本研究使用了基于NEGF-DFT理论的Nanodcal软件,并采用了双ξ极化原子轨道基组来扩展所有的物理量。K点的撒点密度为20×1×1。 0 3图文导读 本研究选取了具有I型和II型带阶匹配的异质结构结构并构建器件模型,研究了其输运性质。

基于GANR所构建的具有I型和II型带阶匹配的异质结构器件示意图如图1所示。器件由三部分构成:左右电极,中心区以及缓冲层。其中,中心区为异质结的主要结构,包括由15-GANR-I/13-GANR-I构成的具有I型带阶匹配的异质结和11-GANR-I/13-GANR-I1B-1构成的具有II型带阶匹配的异质结器件,分别如图1(a,b)所示。

而电极材料则选取了随不同宽度变化均保持金属性的ZGNR,如图1中蓝色和橙色方块所示。所有位于边缘处的C悬挂键均被H原子钝化,从而防止额外磁性的引入。电极的宽度选取为和与之相连的中心区的GANR相同的数值。此外,在左右电极和中心区之间均连接了2个周期的Zigzag石墨烯纳米带(ZigzagGrapheneNanoribbon,ZGNR)作为缓冲层以保证中心区和电极处电势变化的连续性及计算的准确性。

bb98230c-b10e-11ed-bfe3-dac502259ad0.png

图1基于GANR所构建的具有I型和II型带阶匹配的异质结构器件示意图。(a)15-GANR-I/13-GANR-I;(b)11-GANR-I/13-GANR-I1B-1

由于异质结构的能带排列通常对传输特性起着至关重要的作用,因此本研究对于15-AGANR-I/13-AGANR-I和11-AGANR-I/13-AGANR-I1B-1在真实空间中的局部态密度(LDOS)进行了研究,如图2所示。因此,2DLH的能带边缘清楚地分别针对上述两种异质结构表现出了I型和II型带阶匹配。图2所示的构成材料的带隙与带阶匹配的结果一致。对于II型异质结,空间电荷区远长于I型异质结构,然而,中心散射区仍然足够长,可以实现空穴弛豫。

bbbe78f4-b10e-11ed-bfe3-dac502259ad0.png

图2 15-AGANR-I/13-AGANR-I和11-AGANR-I/13-AGANR-I1B-1在实空间中的局部态密度

图3给出了两种异质结构的能带结构示意图和相应的电流-电压曲线。在二维材料异质结界面处由于费密能级的不同,电子和空穴将在浓度差的驱动下形成扩散作用直到达到热平衡,此时两半导体的费米能级EF1和EF2在界面处拉平,合并为一个相同的的费米能级,如式(1-1):

bdf12ee6-b10e-11ed-bfe3-dac502259ad0.png

15-GANR-I/13-GANR-I的能带结构示意图如图3(a)所示。由于15-GANR-I具有较高的费米能级,因此电子会从15-GANR-I扩散到13-GANR-I。与此同时,在15-GANR-I和13-GANR-I的界面处会分别形成正的和负的空间电荷区,该空间电荷区会形成内建电场阻止电荷的进一步扩散。最终,二者达到平衡。由于内建电场的存在,使得15-GANR-I和13-GANR-I的能带在界面处在附加电势的作用下分别向上和向下弯曲。能带弯曲的总能量差可通过如公式(1-2)计算得到:

be08f148-b10e-11ed-bfe3-dac502259ad0.png

式中,VD是接触电位差;VD1和VD2分别是接触的两半导体的内建电场大小。经过计算,15-GANR-I/13-GANR-I的能带弯曲值为0.464 eV。

be198f44-b10e-11ed-bfe3-dac502259ad0.png

图 3 二维材料异质结接触面处的能带结构示意图及器件输运计算得到的电流-电压曲线。(a, b)15-GANR-I/13-GANR-I;(c, d)11-GANR-I/13-GANR-I1B-1

计算得到电流-电压曲线及相应的电压下的整流比分别如图3。对于15- GANR-I/13-GANR-I,如图3(b)所示。当对体系施加正向偏置电压时,左侧电极电势变低,右侧电极电势变高,二者之间的差值即为所加电压的数值。当偏置电压较小时,器件右侧,即13-GANR-I中导带的电子由于在左侧的15-GANR-I中没有空的未占据态,无法实现隧穿形成电流,因此其电流大小基本保持为0。直到偏置电压大于EC1和EV2之差,即EC1−EV2=1.492 eV之后,15-GANR-I才有空带提供电子占据。

此时,电子才可以从右侧隧穿到左侧形成电流,其隧穿通道如图3(a)中蓝色虚线箭头所示。同样的,当对体系施加反向偏置电压时,EC2和EV1的差为EC2−EV1=1.355 eV,相应的电子隧穿路径如图3(a)中橙色虚线箭头所示。从图3(b)中可以清楚地看到,15-GANR-I/13-GANR-I异质结器件的正向开启电压和负向开启电压分别为1.6 V和1.4 V,与带阶匹配的结果一致。

同样,对于如图3(c)所示的11-GANR-I/13-GANR-I1B-1,由于11-GANR-I的费米能级高于13-GANR-I1B-1,电子会从左侧扩散到右侧,形成一个空间电荷区域。由于B原子的掺杂使得13-GANR-I1B-1的费米能级低于价带,因此在价带顶附近有额外的空带允许电子占据。因此,在正负偏置电压下均能产生一个较小的电流,如图3(d)所示。

当施加负电压时,电场与空间电荷区域相反。随着偏置电压继续增加,尽管应用电场可以克服空间电荷区域的电场,然而右边的材料没有其他空带供电子占据,所以电流的变化是可以忽略的。直到所加偏置电压能够使电子从左侧的价带隧穿到右侧材料的导带,即qV>EC2−EV1=1.6 eV之后,电流才会呈指数形式上升。

这种单侧导电特性与II型带阶匹配一致,可广泛应用于p-n结。

为了进一步研究造成其开启电压的原因,本研究计算了I型和II型2DLH在不同偏置电压下的电子透射光谱,分别如图4和图6所示。对于15-AGANR-I/13-AGANR-I,其积分区间的电子透射谱值保持为0,直到负偏压大于-1.4 V。之后,积分区间的电子透射峰面积继续增加,对应于图3中电流呈指数增长。

当向系统施加正电压时也会发生类似的现象,其积分区间内的电子透射谱值保持为0,直到正偏压大于1.6 V。对于11-GANR-I/13-GANR-I1B-1,其透射谱也清楚地显示了负导通电压为-1.6 V。同时,在正偏压下,透射谱中有一个小峰,这对应于其较小的电流。透射谱的这种演变也证实了2DLH的带阶匹配决定了器件在有限偏置下的传输特性。

be7ec8be-b10e-11ed-bfe3-dac502259ad0.png

图 4 15-AGANR-I/13-AGANR-I 在不同偏压下的电子透射谱。(a)-1.2 V;(b)1.2 V;(c)-1.4 V;(d)1.4V;(e)-1.6 V;(f)1.6 V;(g)-1.8 V;(h)1.8 V

beddc148-b10e-11ed-bfe3-dac502259ad0.png

图 5 11-GANR-I/13-GANR-I1B-1 在不同偏压下的电子透射谱。(a)-1.2 V;(b)1.2 V;(c)-1.4 V;(d)1.4V;(e)-1.6 V;(f)1.6 V;(g)-1.8 V;(h)1.8 V

bf43743e-b10e-11ed-bfe3-dac502259ad0.png

图6 两种二维横向异质结整流比随偏置电压的变化曲线

此外,作为数字电路重要的性能指标之一,我们还研究了其整流特性。其定义为IV/I-V,式中IV和I-V分别为在偏置电压V和-V下的电流值。值得注意的是,通过调制的GANR异质结的整流比最高可达15,大于由宽度调制的GNR(20- GNR/17-GNR)的7,如图6所示。这两种异质结构的电压-电流曲线与带阶匹配的结果都吻合较好。因此,我们可以通过使用不同的调制方法,有效地调节二维材料异质结的输运性质。

0 4小结

本研究使用三种不同的方法对GANR的电子性质进行了调制,I型和II型异质结都可以通过纳米孔的形状、纳米带的宽度和掺杂位点及浓度的调控来实现。对于输运性质,两种典型的I型和II型二维材料异质结的的电流-电压特性与基于带阶匹配的结果高度相符。

进一步的,本研究通过鸿之微Nanodcal计算了器件的电子透射谱对其I-V特性进行了进一步的研究。

所构建的I型和II型二维材料异质结的电子透射谱均表现出了特征峰随着所加偏压的规律性演变。其积分区间内的面积变化反映了电流大小的变化趋势,合理解释了电流的变化规律。

本研究证明了基于纳米孔的形状、纳米带的宽度和掺杂位点及浓度的多种调制方法能够有效的实现二维材料异质结器件组分的筛选及性能调控,由同种材料形成的二维横向异质结在电子器件中的应用中具有不可估量的潜力。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谐振器
    +关注

    关注

    4

    文章

    1105

    浏览量

    65533
  • 光电器件
    +关注

    关注

    1

    文章

    170

    浏览量

    18279
  • 偏置电压
    +关注

    关注

    0

    文章

    142

    浏览量

    12691
  • TMD
    TMD
    +关注

    关注

    0

    文章

    15

    浏览量

    9580

原文标题:文献赏析|石墨烯反点纳米带横向异质结带阶匹配及输运特性(陈海元)

文章出处:【微信号:hzwtech,微信公众号:鸿之微】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    石墨电容

    探索未来能量储存新篇章:高性能4.2V 5500F 2.6Ah石墨电容推荐 随着科技的飞速发展,我们对于能量储存的需求也日益增长。在众多的储能元件中,石墨电容以其独特的优势,正逐
    发表于 02-21 20:28

    石墨技术取得重大突破:能应用于纳米电子元件中

    `  (转自搜狐网新闻) 如果说,未来石墨能够在电子界引发轰动,那很有可能是以“纳米”的形式出现。石墨
    发表于 01-15 10:46

    人造皮肤是石墨下一个应用方向?

    传感器。石墨是世上最薄也是最坚硬的纳米材料,并且透光率极高。正是这些特性使得它成为了伦敦帝国理工学院研究人造皮肤的原材料。研究人员目前正在尝试通过3D打印的方式将其打造成化学改性涂层
    发表于 01-28 10:23

    飞机机翼覆冰的融化也能用上石墨技术了!

    的科学家创建出一种全新的石墨纳米带环氧涂层,在被施加电压后,能通过产生的电热实现覆冰的融化。  在James Tour教授的带领下,研究人员将环氧树脂涂层与石墨
    发表于 01-29 11:16

    石墨做电池未来的前景如何?

    在电池领域,尤其是锂电池方向用,有人说做“石墨电池”,基本就属于扯蛋!(在这里,不包括超级电容器和锂硫等新一的电池,它们可能要乐观一些)。先不考虑石墨
    发表于 12-30 19:24

    新兴产业的发展离不开石墨电池的问世

    。“石墨下游产业大都是中小企业,一台透射电子显微镜的价格就在600万元左右,他们心有余而力不足。而且,石墨产业的长远发展需要大量的纳米
    发表于 02-15 08:20

    2017中国(上海)国际石墨技术与应用展览会

    还原大规模制备石墨粉体,液相剥离制备石墨纳米片或石墨
    发表于 03-08 09:24

    放下身段、造福大众的石墨产品

    还是看不到有石墨的影子!问题出在哪儿了?石墨由碳原子组成的单原子层平面薄膜,厚度仅为0.34纳米,单层厚度相当于头发丝直径的十五万分之一
    发表于 07-12 15:54

    2018中国(上海)国际石墨技术与应用展览会

    粉体,液相剥离制备石墨纳米片或石墨微片,石墨
    发表于 09-01 13:48

    石墨发热膜应用

    `<p>石墨(Graphene)由于结构独特、性能优异、理论研究价值高、应用远景广阔而备受关注,是已知的世上最薄、最坚硬、柔韧性最好、重量最轻的纳米材料。在其广泛
    发表于 12-22 17:26

    基于石墨的通信领域应用

    一、引言2010年,诺贝尔物理学被两位英国物理学家安德烈·海姆和康斯坦丁·诺沃肖诺夫夺得,他们因制备出了石墨而获此殊遇。而石墨的成功制备,引起了学界的巨大轰动,也引发了一场
    发表于 07-29 07:48

    石墨的基本特性和制备方法

    石墨中分离出石墨,而证实它可以单独存在,两人也因在二维石墨材料的开创性实验而共同获得2010年诺贝尔物理学奖。
    发表于 07-29 06:24

    关于石墨的全面介绍

    碳原子呈六角形网状键合的材料“石墨”具有很多出色的电特性、热特性以及机械特性。具体来说,具有在室温下也高达20万cm2/Vs以上的载流子迁
    发表于 07-29 06:27

    不是只有石墨电池,传感器也需要

    Sinitskii表示,“我们以前也研究过其它碳基材料传感器,如石墨和氧化石墨。使用石墨
    发表于 05-18 06:44

    石墨纳米带中的输运特性

    Nanodcal是一款基于非平衡态格林函数-密度泛函理论(NEGF - DFT)的第一性原理计算软件,主要用于模拟器件材料中的非线性、非平衡的量子输运过程,是目前国内拥有自主知识产权的基于第一性原理的输运软件。可预测材料的电流 - 电压
    的头像 发表于 10-26 16:27 643次阅读