0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

生物医学应用的量子传感器概述

MEMS 来源:MEMS 2023-02-14 09:34 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

量子传感器正在从实验室走向现实世界。量子传感器的原子长度尺度及其相干特性实现了前所未有的空间分辨率和灵敏度。而生物医学应用能够从这些量子技术中受益,但通常难以评估量子技术对其的潜在影响。量子传感在分子水平、细胞水平和生物体水平的潜在应用概述如图1所示。

b0d1eb90-abb6-11ed-bfe3-dac502259ad0.jpg

图1 量子传感器将对不同尺度的生物医学研究产生影响

据麦姆斯咨询报道,近日,美国哈佛大学(Harvard University)、马里兰大学帕克分校(University of Maryland, College Park)与德国布伦瑞克工业大学(Technische Universität Braunschweig)的联合研究团队在Nature Reviews Physics发表了以“Quantum sensors for biomedical applications”为主题的论文。该论文通讯作者为哈佛大学Hongkun Park,第一作者为哈佛大学Nabeel Aslam。

这篇综述阐述了量子传感存在的问题,分析了量子传感的应用现状,并讨论了量子传感走向商业化的途径。该文章重点介绍了两种前途光明的量子传感平台:光泵原子磁强计(OPM)和金刚石氮空位(NV)中心。另外,该综述文章剖析了从脑成像到单细胞光谱学的四个案例研究,突出了生物医学应用的广泛适用性。

量子传感器及量子传感平台

量子传感器是利用量子相干、干涉和纠缠来测量目标物理量的单个系统或系统集合。量子传感器已经在工作原理迥异的多种系统中实现。这种多样性使其各自适用于不同应用领域,并允许它们在使用中优劣互补。量子传感器有三种突出的应用平台:超导电路(即为超导量子干涉器件SQUID)、原子系综(Atomic ensembles,即为OPM)和固态自旋(Solid-state spins,即为金刚石NV中心)。

文中重点介绍了“OPM”和“金刚石NV中心”这两种量子传感平台。OPM和NV中心可以优势和劣势互补。OPM的高灵敏度使其适用于微弱磁场的宏观检测,如大脑和心脏产生的磁场。相反,NV中心的一项主要优势是传感器到样本的距离短,这样就能够实现对微弱微观信号的高空间分辨率和高灵敏度探测。此外,NV中心是一种多功能传感器(可检测交流和直流磁场、温度等),可在各种条件下工作。这种多功能性使NV中心对细胞水平的光谱学和诊断学应用具有吸引力。

b0e9587a-abb6-11ed-bfe3-dac502259ad0.jpg

图2 OPM和NV磁强计的工作原理

四大量子传感应用案例

1. 基于OPM的脑磁图(MEG)

对人体生物磁性的监测和成像对于诊断和治疗来说大有用处。这些人体生物磁场可由MEG检测,检测结果可用于如癫痫、痴呆等脑损伤和脑疾病的研究。尽管MEG在商业和临床上均得到了广泛应用,但其苛刻的操作条件仍然存在严重的局限性。量子传感技术的出现为解决这些限制开辟了新途径。

OPM无需低温工作条件,因此显著简化了传感器架构,同时缩短了传感器到样本的距离。OPM的另一项优势是能够探测矢量磁场。此外,OPM微型化的研究进展已使OPM-MEG原型得以实现(如图3a),为其实际应用铺平了道路。

b1055be2-abb6-11ed-bfe3-dac502259ad0.jpg

图3 基于OPM的MEG

2. 细胞和组织的基于NV的磁传感和成像

单个细胞和组织也可以产生磁场。磁性标记能够以磁性纳米颗粒(MNP)或自旋标记的形式引入生命系统。但这些磁场均需要具有高灵敏度和高空间分辨率的生物兼容磁强计来测量。进行此类研究的常用方法有两种:一种方法是使用毫米级金刚石芯片,该芯片带有NV中心组成的微米级薄表面层;另一种方法是使用含有NV中心的纳米金刚石,可将其注射或摄取到细胞/组织中并功能化,例如靶向蛋白质。

标记、探测和靶向单个细胞对于如区分癌细胞与健康细胞等诊断应用来说很有帮助。MNP构成了磁免疫分析技术的基础,磁免疫分析技术是一种新兴的辅助诊断方式,与荧光标记相比更具潜在优势:长期稳定性、可忽略的背景信号以及定量检测。金刚石NV中心目前已用于各种生物样本中MNP的定量检测和宽视场成像,具有微米级分辨率和毫米级视场。

b115b49c-abb6-11ed-bfe3-dac502259ad0.jpg

图4 生物样本的基于NV中心的磁传感

3. 基于NV中心的纳米级和微米级核磁共振(NMR)

传统NMR的主要限制是灵敏度低,通常需要毫米级样本。将NMR波谱扩展到微米级和纳米级样本有望实现令人兴奋的应用。

基于NV的磁强计的出现,使得在环境条件下对纳米级和微米级样本进行NMR波谱分析成为可能。如图5a所示,可将样本放置于金刚石NV中心附近,探测距离在纳米到微米范围,取决于具体应用。在纳米尺度,基于NV的NMR受益于样本自旋的统计极化;而在微米尺度上,由于热极化占主导地位,通常需要通过强磁场和超极化的方法来进一步增强。

NV中心的一个特点是其磁场传感带宽大,频率范围从直流(0 Hz)到千兆赫(GHz)。因此,利用相同实验装置就能检测多种原子核自旋乃至电子自旋,而无需像传统NMR和电子顺磁共振波谱学那样必须改变射频设备。在对生物样本成像时,基于NV的NMR可充分发挥自身潜力,因为它可以揭示纳米尺度到微米尺度的化学成分变化(如图5d)。

b12b9c08-abb6-11ed-bfe3-dac502259ad0.jpg

图5 基于NV中心的NMR

4. 基于NV的量子温度测量

利用纳米金刚石的NV进行活体纳米级温度测量,能够对细胞和小型生物中各种与温度相关的生物现象进行局部探测,包括外部热梯度和内部热产生的影响,也可为控制细胞周期和有机体发育提供工具。

与磁场传感一样,基于NV的量子温度测量依赖于源自金刚石热膨胀的微波跃迁频率的温度相关变化(如图6a)。为了优化灵敏度,同时最小化对其他影响的敏感性,通常使用四点测量方案(如图6b)。纳米金刚石量子传感器非常适合用于细胞和小型生物的高空间分辨率温度传感。与传统的温度探针相比,纳米金刚石量子传感器具有纳米级、稳定性和生物相容性等特点。灵敏的纳米级温度测量在生命科学应用领域开辟了许多可能性,特别是与红外激光照射引起的局部外源加热相结合的应用(如图6c)。

b14540cc-abb6-11ed-bfe3-dac502259ad0.jpg

图6 基于纳米金刚石NV中心的温度测量

总结

在过去十年中,量子传感器领域取得了巨大的进步,已从早期的原理验证实验逐步发展到生物医学科学的实际应用。尽管量子传感器前途光明,但仍然存在诸多挑战,这些问题的探索与解决可能需要多学术领域和行业之间的相互合作。一方面,当前量子传感器的灵敏度可能需要通过新的传感途径与材料开发相结合来进一步提升。另一方面,这些技术需要通过进一步集成化和微型化,才能够在现实条件下实现可扩展性和易操作性,这将是量子传感器技术广泛应用和成功商业化的关键。伴随这些技术改进,量子传感器有望成为生物医学系统表征和诊断的关键工具。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2573

    文章

    54366

    浏览量

    785907
  • OPM
    OPM
    +关注

    关注

    0

    文章

    4

    浏览量

    7613
  • 量子传感器
    +关注

    关注

    4

    文章

    93

    浏览量

    8202
  • 直流磁场
    +关注

    关注

    0

    文章

    2

    浏览量

    1963

原文标题:综述:生物医学应用的量子传感器

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    STEVAL-MKI249KA生物传感器评估套件技术解析与应用指南

    STMicroelectronics STEVAL-MKI249KA生物传感器评估套件设有带ST1VAFE6AX生物传感器的专用PCB。STMicroelectronics
    的头像 发表于 10-17 10:07 341次阅读
    STEVAL-MKI249KA<b class='flag-5'>生物传感器</b>评估套件技术解析与应用指南

    MATLAB 助力香港中文大学解决生物医学图像处理挑战

    Processing Toolbox™ 加速了生物医学图像处理工作流程。借助 MathWorks 的软件,研究人员高效地对万亿体素级别的图像进行了分割和分析,以往这些任务需要高端计算基础设施和大量手动编程
    的头像 发表于 08-28 15:07 419次阅读

    量子电导式传感器与其他传感器相比有哪些独特优势?

    量子电导式传感器作为近年来传感技术领域的重要突破,凭借其独特的物理机制和性能表现,在环境监测、生物医学、工业控制等领域展现出显著优势。与传统传感器
    的头像 发表于 07-27 22:15 468次阅读

    超小型位移传感器:精密测量领域的微型革命者

    在智能制造、生物医学、航空航天等尖端领域,对空间利用率和测量精度的极致追求正推动传感器技术向微型化、集成化方向突破。超小型位移传感器作为这一趋势的代表,凭借其毫米级甚至更小的体积、微米级乃至纳米级的测量精度,正在重新定义精密测量
    的头像 发表于 07-26 16:43 705次阅读

    微型位移传感器:精密制造与科研创新的“隐形引擎”

    在工业4.0与智能制造的浪潮中,微米级甚至纳米级的精度控制已成为衡量技术实力的核心指标。从半导体晶圆切割到航天部件装配,从生物医学检测到精密仪器校准,微型位移传感器正以“隐形引擎”的角色,推动着
    的头像 发表于 06-24 08:38 432次阅读

    量子精密测量“牵手”传感技术 多款量子传感器在合肥发布

    量子科技是安徽三大科创前沿高地之一,传感器则是安徽先进制造业的“三谷”之一,均被写入2025《安徽省政府工作报告》。为了让传感设备拥有“更加敏锐的感官”,5月18日,在合肥市量子科仪谷
    的头像 发表于 05-20 18:06 690次阅读
    <b class='flag-5'>量子</b>精密测量“牵手”<b class='flag-5'>传感</b>技术 多款<b class='flag-5'>量子</b><b class='flag-5'>传感器</b>在合肥发布

    高光谱相机在生物医学中的应用:病理分析、智慧中医与成分分析

    企业,深圳市中达瑞和科技有限公司依托自主研发的高光谱相机与光谱云平台,在生物医学领域实现了多项突破性应用。本文聚焦其在病理分析、病毒检测及成分分析中的核心价值与实践成果。 一、病理分析:精准诊断与效率提升 高光谱相机通过非侵入式成像,结合人工智
    的头像 发表于 04-24 11:25 514次阅读

    调Q纳秒激光生物成像领域-光声成像方面的应用

    光声成像PAI(photoacoustic imaging)技术作为一种新的生物医学影像方法,在临床和生物医学研究领域拥有巨大的应用前景。 传统PAI技术使用昂贵且笨重的Q开关Nd:YAG/OPO
    的头像 发表于 04-15 14:13 729次阅读
    调Q纳秒激光<b class='flag-5'>器</b>在<b class='flag-5'>生物</b>成像领域-光声成像方面的应用

    生物传感器:解锁生命密码的“芯片”,正在改变世界的感知方式

    当你用智能手表监测心率,用血糖仪检测健康,甚至喝下一杯经过微生物检测的牛奶时,或许不曾想到,这些日常场景背后都藏着同一项前沿技术——生物传感器。这个将生物学与电子技术融合的“魔法工具”,正在以
    的头像 发表于 03-26 18:19 1010次阅读

    运动测量传感器概述与原理

    关键技术——运动测量传感器。本文将带你从工作原理到实际应用,全面解析这项“运动感知”技术。 第一部分:运动测量传感器概述 运动测量传感器是一种用于测量人体运动的装置。其核心功能是通过检
    的头像 发表于 03-13 14:21 773次阅读

    生物传感器的主要组成包括_生物传感器的分类

    这是生物传感器的核心部分,由固定化的生物敏感材料构成,用于识别被测目标。这些生物敏感材料包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物
    的头像 发表于 01-27 14:01 1679次阅读

    美国防部正计划研发更强大的量子传感器

    DARPA 正专注于推进量子传感器的研究,以应对定位、导航和授时(PNT)以及军事应用中的情报、监视和侦察(ISR)方面的挑战。最新一项名为“鲁棒量子传感器”(RoQS)的新计划旨在提
    的头像 发表于 01-10 18:08 1899次阅读

    深入剖析MEMS压力传感器封装与测试,揭秘其背后的奥秘!

    MEMS(微机电系统)压力传感器以其体积小、功耗低、集成度高、性能优异等特点,在汽车、生物医学、航空航天等领域得到了广泛应用。然而,MEMS压力传感器的性能不仅取决于其设计和制造过程,还与其封装
    的头像 发表于 01-06 10:49 3222次阅读
    深入剖析MEMS压力<b class='flag-5'>传感器</b>封装与测试,揭秘其背后的奥秘!

    2025年引起轰动的10大传感器技术

    传感器革命正推动各领域创新,2025年将涌现十种新型传感器,包括智能成像、量子、神经形态、高端MEMS、石墨烯、生物降解、太赫兹、高光谱成像、软性可拉伸及光子集成电路
    的头像 发表于 01-04 10:17 1275次阅读

    玻璃通孔(TGV)技术在传感器制造和封装中的应用

    玻璃具有优异的性能,例如高几何公差、出色的耐热和耐化学性、优异的高频电性能以及密封性,已成为各种传感器和 MEMS 封装应用(包括机电、热、光学、生物医学和射频设备)的高度通用基板。在这些应用中
    的头像 发表于 12-20 09:44 3552次阅读
    玻璃通孔(TGV)技术在<b class='flag-5'>传感器</b>制造和封装中的应用