0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

新材料让光“负折射”实现晶体管功能,在纳米尺度更好地操控光

MEMS 来源:中国科学报 2023-02-13 16:15 次阅读

8dac6db8-aac9-11ed-bfe3-dac502259ad0.jpg


极化激元晶体管的基本原理示意图

纳米尺度的光电融合是未来高性能信息器件发展的必然趋势。如何在微纳甚至原子尺度对光进行精准操控,是其中最关键的科学问题。

中国科学院国家纳米科学中心纳米光子室的科研人员率先提出利用极化激元作为光电互联媒介的新思路,发挥其对光高压缩和易调控的优势,并有了切实可行的研究结果。

近日,该团队与合作者发现低对称晶体中极化激元“轴色散”效应 ,并提出异质结调控极化激元新机制。在此基础上,他们设计并构筑了微纳尺度的石墨烯/氧化钼范德华异质结,实现了用一种极化激元调控另一种极化激元开关的“光晶体管”功能。利用这一功能,未来有望像操纵电子一样操纵光子,为高性能光电融合的发展作出重要铺垫。2月10日,相关研究发表于《科学》。

新奇的“负折射”

“这项研究中,我们通过材料设计实现了光正负折射的动态调控,为构筑与非门等光逻辑单元提供了重要基础。”该团队负责人、国家纳米科学中心研究员戴庆告诉《中国科学报》,“这意味着,人们可以在光电互联设计中实现类似晶体管的功能。”

向水杯中插根筷子,看起来筷子似乎被“折断”了,但这实际上是光的折射带来的视觉效果。光的折射遵循折射定律,即光穿过不同界面产生折射时,入射光和折射光会对称分布在法线两侧。而负折射是入射光与折射光在界面法线同侧的特殊物理现象。

“我们可以将正折射理解为‘正常的折射’(符合折射定律)。如果正折射时光线向右偏折,负折射就是向左偏折。”论文第一作者、国家纳米科学中心副研究员胡海解释说,“比如,我们通常看到水中的筷子向右偏,发生负折射时就会看到筷子偏向左边。”

光线向哪个方向折射由传播介质的材料性质决定。在自然界中,找到能产生负折射现象的材料绝非易事,这也令一些科学家最开始不相信负折射现象的存在。

设计“高端食材”

与电子相比,光子具有速度快、能耗低、容量高等诸多优势,未来有望大幅提升信息处理能力。而光电融合系统被认为是构建下一代高效率、高集成度、低能耗信息器件的重要方向。但现有光电互联技术依赖多次光电效应转换,存在效率低、速度慢、体积大等问题。此外,和电子相比,光子的纳米尺度操控并不容易。

“控制光的折射方向——从左边穿过、右边穿过还是两边同时穿过,就像晶体管实现高低(1,0)两个电位的切换一样。控制光的折射方向相当于实现了晶体管导通、断开或高低电位功能。”胡海解释说。

1951年,我国物理学家黄昆先生提出“极化激元”概念。极化激元是光与物质相互耦合形成的一种特殊电磁模式,可以实现高度光场压缩与能量聚集,因此成为纳米光子学领域的重要研究对象。

但极化激元携带光子属性,人们难以对其实现有效调控。此前的调控方式是,以微纳尺度的人工周期性结构(多种微结构堆叠排列)造出“超材料”,利用结构特性实现光偏折。这种方法需要进行复杂的结构加工,对材料和工艺的要求都很高,而在纳米尺度上实现的难度更大。并且,光在结构内部穿过成百上千个界面,会出现难以避免的散射损耗。

“这些问题导致超材料技术虽然验证了负折射现象的存在,却未能进一步应用在实际器件中。”胡海说。

为解决这些问题,团队进行了大量研究。在无数次理论推演和实验验证后,团队认为应该换个思路,把问题简单化,回到材料本身的属性上寻找解决方案。

“就像《舌尖上的中国》所说,高端的食材往往只需要最朴素的烹饪方式。与其在厨艺(结构排列和加工工艺)上用力,不如从食材(材料设计)方面寻找出路。”戴庆解释道,“相比人工结构,聚焦材料自身的光子学特性是一种更直接获取光学功能的途径。”

沿着这一方向,研究团队提出利用范德华材料极化激元构筑纳米至原子尺度的光电互联新方案。该方案充分发挥极化激元对光高压缩和易调控的优势,避免原有光电效应引起的问题。未来,这种极化激元新机制不仅能更好实现光电互联,还可以提供额外的信息处理能力,从而进一步提升光电融合器件的性能。

崭新的光操控平台

无论大数据、云计算还是元宇宙,我们身处的这个“炫酷”信息世界,其实是通过开关、放大、滤波、信号调制等数个基本晶体管功能组合叠加实现的。

“如果可以像操纵电子一样操纵光子,就能够为高性能光电融合的发展作出重要铺垫。”戴庆说,“目前,我们可以控制光传不传、向哪个方向传,这些特性类似晶体管的开关效应、单向传输等功能。”

为将技术应用于光晶体管设计,研究人员把目光锁定在石墨烯和一种氧化物上。这些都是纳米至单原子级厚度的层状材料,且两个材料间有互补的光电性质,有望实现预期的折射效果,还能把“控制结构”做得尽可能小。

人们能看见一个物体的原因是物体发光或反光进入眼中,而负折射可以改变光的传播方向。研究者认为,如果利用该技术改变原本射入人眼的光的路线,就能在一定条件下实现隐身效果。

论文审稿人评价说:“这是一项非常有趣的研究,证实了一个非常规的物理现象,为研究纳米尺度的光操控提供了崭新平台。”

相关论文信息:
https://doi.org/10.1126/science.adf1251

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 纳米
    +关注

    关注

    2

    文章

    678

    浏览量

    36680
  • 新材料
    +关注

    关注

    8

    文章

    357

    浏览量

    21113

原文标题:新材料让光“负折射”实现晶体管功能,在纳米尺度更好地操控光

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    晶体管Ⅴbe扩散现象是什么?

    晶体管并联时,当需要非常大的电流时,可以将几个晶体管并联使用。因为存在VBE扩散现象,有必要在每一个晶体管的发射极上串联一个小电阻。电阻R用以保证流过每个晶体管的电流近似相同。电阻值R
    发表于 01-26 23:07

    基于光的打印金属纳米结构的方法

    纳米尺度上打印金属可创建具有有趣功能的独特结构,对电子设备、太阳能转换、传感器和其他系统的发展至关重要。
    的头像 发表于 01-22 14:43 354次阅读

    MSP-EXP430G2ETLED通过晶体管闪烁,使用外部电源为LED供电时,代码不起作用的原因?

    切换晶体管时遇到了一个问题。我正在尝试 LED 通过晶体管闪烁。当我从评估板(即 MSP-EXP430G2ET)获取电源 (3.3V) 时,该程序有效。但是当我使用外部电源 (8
    发表于 01-22 06:00

    特殊类型晶体管的时候如何分析?

    ,则分析时则按照单独的晶体管电路分析,与一般晶体管电路无差。 如果多发射极或多集电极的电路非多极的一侧全部短起来当作一个晶体管,那么此时的关系可以看作一个或门的关系,只要有一路导通,
    发表于 01-21 13:47

    单结晶体管的工作原理是什么?

    常用的半导体元件还有利用一个PN结构成的具有阻特性的器件一单结晶体管,请问这个单结晶体管是什么?能够实现阻特性?
    发表于 01-21 13:25

    有什么方法可以提高晶体管的开关速度呢?

    在其内部移动的时间越短,从而提高开关速度。因此,随着技术的进步,晶体管的尺寸不断缩小。例如,从70纳米(nm)缩小到现在的7纳米。 2. 新材料:研究人员一直在研究
    的头像 发表于 01-12 11:18 508次阅读

    可性能翻倍的新型纳米晶体管

    IBM 的概念纳米晶体管在氮沸点下表现出近乎两倍的性能提升。这一成就预计将带来多项技术进步,并可能为纳米晶体管取代 FinFET 铺平道路。更令人兴奋的是,它可能会导致更强大的芯片
    的头像 发表于 12-26 10:12 245次阅读

    设计和模拟厘米尺度超透镜的工作流程

    本文介绍了设计和模拟厘米尺度超透镜的工作流程。
    的头像 发表于 12-16 11:02 565次阅读
    设计和模拟厘<b class='flag-5'>米尺度</b>超透镜的工作流程

    如何选择分立晶体管

    来至网友的提问:如何选择分立晶体管
    发表于 11-24 08:16

    晶体管详细介绍

    专业图书47-《新概念模拟电路》t-I晶体管
    发表于 09-28 08:04

    高效的固态衍射光学元件制造方法

    该方案通过结合两种仅折射率匹配的材料,有效地将DOE的临界尺寸从纳米尺度扩大到微米尺度,并相应地增加对制造误差的容忍度(图一)。
    发表于 09-15 11:39 473次阅读
    高效的固态衍射光学元件制造方法

    不同类型的晶体管及其功能

    晶体管晶体管是另一种 BJT——双极结型晶体管,它包含两种 p 型半导体材料。这些材料通过薄 n 型半导体层分开。在这些
    发表于 08-02 12:26

    纳米尺度原子级分散Rh催化C≡N加氢研究新进展!

    的石墨烯(ND@G)界面上精准构建原子级分散Rh1催化剂,实现其高效催化C≡N加氢制仲胺,并在亚纳米尺度下系统理解C≡N加氢的尺寸效应与金属依赖效应。该项研究成果于近日在ACS Catalysis在线发表。
    的头像 发表于 07-19 17:25 321次阅读
    亚<b class='flag-5'>纳米尺度</b>原子级分散Rh催化C≡N加氢研究新进展!

    晶体管电容电路设计!#晶体管 #电容 #电路 #电子#硬声创作季

    晶体管
    也许吧
    发布于 :2023年05月18日 09:30:18

    功率放大器在磁性微纳米颗粒微流体操控研究中的应用

    了不同因素对成链的影响。探索了一种新的流场显示方法,利用磁性纳米链对微尺度下气泡溃灭时的流场进行显示;还通过气泡驱动-磁场导航的方式, 对非均匀型磁性颗粒进行精准操控实现了微
    的头像 发表于 05-08 11:35 289次阅读
    功率放大器在磁性微<b class='flag-5'>纳米</b>颗粒微流体<b class='flag-5'>操控</b>研究中的应用