0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于COMSOL平行流道液冷板对电池散热性能的影响

8XCt_sim_ol 来源:仿真秀App 2022-12-22 15:13 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

导读:前不久,笔者在仿真秀官网和APP开启COMSOL流体和传热系列免费讲座,且为参加直播的用户提供comsol答疑。日前已组织了两期,深受用户喜爱。需要观看回放的同学可以点击下方链接查看。

COMSOL中相变能量桩段模型传热案例实操

请注意!仿真秀COMSOL流体和传热系列讲座11月24日开讲

12月22日20时-21时,笔者将继续在仿真秀官网和APP带来COMSOL流体和传热第三期讲座《论文复现:平行流道液冷板对电池散热性能的影响》详情见后文,以下是正文。

一、主流电池冷却方法

目前共有四种主流的对电池进行冷却的方法分别是空气冷却、冷却液冷却、相变材料(PCM)冷却和热管冷却。为了加强散热系统的冷却效果往往会同时使用多种冷却的方法,成为复合散热冷却。

1、空气冷却

空气冷却主要是指以空气作为介质进行热交换从而对发热体进行冷却的方式。通过空气的流动对发热的电池组进行降温处理,具有成本低、结构简单、维护方便等优点。空气冷却可分为自然对流冷却和强制对流冷却。自然对流冷却是指利用空气在受热过程中自发的流动来达到冷却的目的;强制对流冷却是指利用风扇或专门设计的风管在特定空间内形成相应的气流以达到冷却的目的,两者的区别就是空气流动的速度即风速不同。由于空气的比热容较低,故空气冷却难以处理大量热量其应用具有一定的局限性。[1]

2、冷却液冷却

冷却液冷却是指以液体冷却介质如水、矿物油、乙二醇、电介质进行热交换从而对发热体进行冷却的方式。由于冷却液具有较高的换热系数,与空气冷却相比,冷却液冷却可提供更好的热交换能力。但由于冷却液的密度和粘度比空气大得多,对比空气冷却系统,冷却液冷却系统通常需要外接输送能力更强的泵送装置,因此质量更大,结构更复杂。[1]

3、相变材料(PCM)冷却

相变材料(PCM)冷却是指以相变材料作为介质进行热交换从而对发热体进行冷却的方式。根据相变材料的化学性质,可分为无机、有机及复合相变材料。无机相变材料包括熔融盐、水合盐、金属合金等。其中,水合盐比较适用于中低温储能,但相变时易出现过冷和相分离问题。金属合金比较适合中高温储能,但价格昂贵。熔融盐的价格经济,且具较大的储能密度。有机相变材料包括石蜡、脂肪酸、多元醇以及聚烯烃、聚多元醇等,其特点是无明显相分离及过冷现象(有机糖醇类除外),腐蚀性小,但同时具有体积储热密度较小、热导率低、易燃烧等问题。为了克服单一材料性能的不足,同时对材料进行封装,可通过制备复合相变材料使材料的整体性能满足应用的需求。[1,2]

4、热管冷却

热管冷却是充分利用了热传导原理与制冷介质的快速热传递性质,透过热管将热源的热量迅速传递到冷端。热管具有更高的安全性,而且相比风冷、液冷、相变材料冷却,热管冷却有着高效的散热效率和散热速度。由于热管利用毛细力运输工质,所以极适合于零重力的工作环境,广泛应用于空间飞行器中。热管可以进行远距离传送热量,能够在狭小的空间内进行冷却,其传热温差小、传热量大。热管冷却也存在着一些问题,比如热管的腐蚀,会影响到换热能力,甚至是导致热管内部的液体泄露。[1,3]

二、论文复现

结合具体的仿真和操作实际,下面本文对章嘉晶等人[4]于2021年所做的电池液冷模拟中的一组异侧布置分配流道面积为1445平方毫米,上底与下底比例为3:7的工况进行了基本复现。为了对电池散热进行更深入的研究,本文在所复现模型的基础上加上了石蜡相变冷却模块,并将单一液冷和液冷加相变复合冷却的结果进行了对比。

所复现的模型的几何如图1所示,具体的几何尺寸由参考文献提供,对于缺失的尺寸根据绘图的实际情况取一个合理的值。

8907d3d0-812d-11ed-8abf-dac502259ad0.png

图1

流道内的工质水,液冷板和电池的相关的物性参数如图2所示。其中,环境温度以及模型的初始值为300K,流道入口流速为0.03米每秒、温度为300K,外部全部边界与空气存在对流换热,换热系数为1瓦每平方米乘开氏度,电池发热功率为21.86W。

89257250-812d-11ed-8abf-dac502259ad0.png

图2

如图3所示为第1200秒时,模型的温度云图与温度等值面,从图中可以看出模型的最高温为304.301K,与所复现文献的计算结果304.346K相近,误差仅为0.015%。

893b6178-812d-11ed-8abf-dac502259ad0.png

图3

如图4所示为流道内的速度分布和压力分布情况,从图中看出速度的最大值约为0.048米每秒,与所复现文献的计算结果0.042米每秒相近,误差为12.5%。

895c63e6-812d-11ed-8abf-dac502259ad0.png

图4

三、复合冷却模拟

在保持所复现模型的几何尺寸和边界条件的基础上,在上下两个液冷板端面加上一层厚度为4毫米的石蜡相变材料,如图5所示为添加相变石蜡之后的几何模型,如图6所示为相变石蜡材料的相关物性参数。为了更直观展示相变石蜡对散热的促进效果,模型总共计算5000秒。

897dad1c-812d-11ed-8abf-dac502259ad0.png

图5

89af71da-812d-11ed-8abf-dac502259ad0.png

图6

如图7所示为第5000秒时,相变石蜡材料的融化情况,其中红色部分为固态石蜡,蓝色部分为液态石蜡。

89cf1a1c-812d-11ed-8abf-dac502259ad0.png

图7

如图8所示为相变石蜡材料的液相率随时间的变化情况。从图中可以看出随着电池的升温,石蜡开始融化,在第5000s时液相率大概为24.2%左右。

89f43edc-812d-11ed-8abf-dac502259ad0.png

图 8

如图9所示,为单一液冷和液冷加相变复合冷却时,电池最高温的升温情况。从图中可以看出在单一液冷时,大概在1200秒是电池的温度基本达到稳定,维持在304.3K作用;当加入了相变材料采取复合冷却的时候5000秒时电池的最高温还未到达稳定状态,电池的温度还在缓慢升高,最高温度为303.3K左右。通过对比,可以发现在电池持续工作5000秒的时段内,石蜡相变材料能有效的减缓电池的升温以及降低电池的最高温度。

8a0b09a0-812d-11ed-8abf-dac502259ad0.png

图9

四、结语

章嘉晶等人[4]于2021年所做的电池液冷模拟中的一组异侧布置分配流道面积为1445平方毫米,上底与下底比例为3:7的工况进行了基本复现。为了对电池散热进行更深入的研究,本文在所复现模型的基础上加上了石蜡相变冷却模块,并将单一液冷和液冷加相变复合冷却的结果进行了对比,结果表明电池持续工作5000秒的时段内,石蜡相变材料能有效的减缓电池的升温以及降低电池的最高温度。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 散热性能
    +关注

    关注

    0

    文章

    11

    浏览量

    9763
  • COMSOL
    +关注

    关注

    35

    文章

    94

    浏览量

    57834
  • 电池
    +关注

    关注

    85

    文章

    11368

    浏览量

    141330

原文标题:论文复现:基于COMSOL平行流道液冷板对电池散热性能的影响

文章出处:【微信号:sim_ol,微信公众号:模拟在线】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电压放大器在芯片散热驱动液冷系统实验中的应用

    拓扑优化方法设计高效液冷,最终通过实验证明该系统相比传统散热方式具有更优异的冷却效果和热均匀性,为电子设备散热提供了一种创新的解决方案。 实验目的:通过压电微泵驱动下冷却液在拓扑优
    的头像 发表于 11-28 15:31 180次阅读
    电压放大器在芯片<b class='flag-5'>散热</b>驱动<b class='flag-5'>液冷</b>系统实验中的应用

    液冷散热时代:AI服务器如何重构磁元件设计

    随着AI服务器功率密度的快速提升,传统的风冷散热方案在热管理方面逐渐面临挑战。在此背景下,液冷散热技术正加速应用于数据中心,特别是高算力的AI集群中。 这一散热方式的变革,并不仅仅是冷
    的头像 发表于 11-21 11:42 198次阅读
    <b class='flag-5'>液冷</b><b class='flag-5'>散热</b>时代:AI服务器如何重构磁元件设计

    浮思特 | NMB散热风扇静音如何?卓越静音效果提升散热性能

    供应商之一,NMB(美蓓亚三美)散热风扇凭借其卓越的静音技术与强大的散热性能,成为众多行业用户的首选。1.NMB散热风扇的静音设计理念NMB散热风扇以静音
    的头像 发表于 11-06 14:15 209次阅读
    浮思特 | NMB<b class='flag-5'>散热</b>风扇静音如何?卓越静音效果提升<b class='flag-5'>散热性能</b>

    液冷液冷技术的关键角色

    冷却液体与发热器件不直接接触,冷板式液冷便是其中典型代表。   冷板式液冷方案解析   冷板式液冷采用微通道强化换热技术,散热性能极高,行业成熟度也处于领先水平。它通过由铜铝等导热金属
    的头像 发表于 10-13 08:37 1.1w次阅读

    激光焊接技术在焊接液冷工艺中的应用

    液冷作为电子设备、新能源汽车电池组及高功率器件散热的核心部件,其制造工艺对焊接质量要求极为严格。激光焊接技术凭借其高精度、低热变形和优异密封性等特点,在
    的头像 发表于 09-01 15:33 491次阅读

    南芯科技推出190Vpp压电微泵液冷驱动芯片SC3601

    波形的总谐波失真加噪声 (THD+N) 低至 0.3%,待机功耗低至微安级。搭载该芯片的液冷方案可大幅提升移动智能终端散热性能,填补了国产技术空白。目前,SC3601 已在多家客户导入验证并即将量产。
    的头像 发表于 06-18 17:20 1383次阅读

    MUN12AD03-SEC的热性能如何影响其稳定性?

    :为了进一步提高散热效果,建议在 PCB 设计时采用以下措施:增加散热面积:在模块周围设计足够的散热区域,避免其他发热元件过于靠近,减少热量堆积。*使用导热材料:在 PCB 上使用导热性能
    发表于 05-15 09:41

    提升约2倍散热性能!东芝推出新型SCiB™锂离子电池模块 适用于频繁高倍率充放电使用场景

    ——通过增强散热性能,实现持续高功率输入输出与电池寿命的双重保障——  株式会社东芝(以下称东芝)将于2025年4月中旬起,陆续在全球各地发售一款新型SCiB™锂离子电池模块。该产品专为电动巴士
    的头像 发表于 04-09 15:06 716次阅读
    提升约2倍<b class='flag-5'>散热性能</b>!东芝推出新型SCiB™锂离子<b class='flag-5'>电池</b>模块 适用于频繁高倍率充放电使用场景

    散热性能PCB:汽车电子高温环境下的 “稳定器”

    在电子设备飞速发展的当下,芯片性能不断提升,电子元件的集成度越来越高,这使得设备在运行过程中产生的热量急剧增加。对于高难度PCB而言,高效散热成为了保障其稳定运行的关键因素,高散热性能 PCB
    的头像 发表于 03-17 14:43 576次阅读

    石墨膜和铜VC散热性能和应用方面的区别

    石墨散热膜与铜VC(均热板)在散热性能和应用方面的区别如下:一、散热性能对比1.导热机制◎石墨散热膜:依赖石墨材料在平面方向的高导热性(15
    的头像 发表于 03-13 17:13 2103次阅读
    石墨膜和铜VC<b class='flag-5'>散热性能</b>和应用方面的区别

    超薄时代的选择:0.025mm合成石墨片如何重塑消费电子散热格局

    现代电子产品对轻薄化设计的需求。而0.025mm的合成石墨片,其厚度仅为传统散热材料的几十分之一,却能提供卓越的散热性能。这种超薄的厚度设计,使得石墨片能够轻松嵌入到电子产品的内部结构中,不会增加额外
    发表于 02-15 15:28

    导热氧化铝粉(DCA-S)增强锂电池散热性能的机理与效果分析

    ,导致电池温度升高。过高的温度不仅会缩短电池的循环寿命,降低其性能,还可能引发热失控,造成安全隐患。因此,如何有效解决锂电池散热问题,提高
    的头像 发表于 01-06 09:38 1636次阅读

    DOH工艺 | 助力中国电动汽车保持领先优势

    ,设计了串联、并联与串并联三种冷结构,从器件温升、系统能效、散热性能三个方面共计10项指标评估了冷
    的头像 发表于 12-31 07:40 928次阅读
    DOH工艺 | 助力中国电动汽车保持领先优势

    DOH新材料工艺封装技术解决功率器件散热问题

    ,设计了串联、并联与串并联三种冷结构,从器件温升、系统能效、散热性能三个方面共计10项指标评估了冷
    的头像 发表于 12-24 06:41 1347次阅读
    DOH新材料工艺封装技术解决功率器件<b class='flag-5'>散热</b>问题

    Celsius EC Solver:对电子系统散热性能进行准确快速分析

    Cadence Celsius EC Solver 是一款电子产品散热仿真软件,用于对电子系统散热性能进行准确快速的分析。借助 Celsius EC Solver,设计人员能够在设计周期的早期阶段
    的头像 发表于 12-16 18:11 2126次阅读
    Celsius EC Solver:对电子系统<b class='flag-5'>散热性能</b>进行准确快速分析