0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

9种实用的将3.3V输出连接到5V输入的方法!

硬件攻城狮 来源:玩转单片机与嵌入式 作者:玩转单片机与嵌入 2022-12-20 11:42 次阅读

在本文中,我们将介绍相反的问题:我们有一个3.3V输出,我们需要驱动一个5V系统。

这是一个非常典型的情况,我们有一个3.3V系统(例如大多数32位系统,如STM32),我们需要将数据发送到较旧的5V系统,如51单片机

首先,我们需要考虑我们正在连接哪种5V系统。特别是,我们需要知道:

低电平和高电平输入和输出电压。

输入电流

对于CMOS输入,输入电流通常在1uA左右或更低,因此不存在这样的问题。对于TTL器件,输入电流甚至可能超过1 mA(例如,参见7400数据表)。因此,在与TTL输入接口时,应采取一些额外的措施,我们将进行逐一的解释。

另一个更重要的方面由逻辑电平。

事实上,5V TTL和5V CMOS输入具有不同的逻辑电平,因此我们将提出的一些解决方案对于某些输入是足够的,但这些解决方案无法可靠地用于其他输入类型。

64753ff6-8017-11ed-8abf-dac502259ad0.png

图1:3.3 V CMOS输出、5 V TTL输入和5 V CMOS输入的逻辑电平

将3.3V输出接口至5V输入的主要方式有:

直接连接

使用 74HCTxx 栅极(或其他 5V TTL 输入兼容系列)

使用二极管偏移

电阻偏移

双极型晶体管/场效应管逆变器

系列晶体管

双极型晶体管系列

电平转换器 IC

光耦合器/隔离器

1、直接连接

这是最简单的方法。此解决方案“几乎总是”有效,但有一些重要的警告。

6499a6e8-8017-11ed-8abf-dac502259ad0.png

图2:3.3V CMOS和5V TTL器件之间可以直接连接

首先,当与TTL输入接口时,任何最新的CMOS输出都将工作,因为3.3V CMOS的高电平输出电压接近3.3V(注意!实际输出电压取决于输出电流。对于重负载输出,输出电平可能变化为0.5V或更高!),TTL的最小高电平输入电压仍为2V。同样,如果不是负载太重,CMOS的低电平输出电压也低于最大低电平TTL输入电压。

我们之所以写“最新”的CMOS,是因为较旧的CMOS芯片(例如CD4xxx系列)具有非常高的输出阻抗,因此它们不会吸收/源出太多电流(您通常不希望吸收/源出超过0.5 mA)。试图获得太多的电流会使输出电压偏移太大。较旧的TTL芯片具有输入电流,可能超过1mA。几乎所有现代CMOS器件(例如MCU的GPIO)都可以毫无问题地驱动更高的电流。

其次,当连接到5V CMOS器件时,这可能有效,但不可靠。事实上,5V CMOS的高电平输入电压为3.5V。这甚至高于您期望从3.3V系统(即3.3V)获得的最大输出电压。

不过,为什么这有时还可以使用呢?答案是由于实际的阈值逻辑电平,即5V CMOS的2.5V。任何高于2.5V的电压将被读取为1,任何低于2.5V的电压将被读取为0。

但是,实际的阈值水平可能会随着温度和老化而变化:在两个逻辑电平区域之间操作是不安全的。任何噪声或干扰都可能在输出端产生毛刺。如果您的系统必须可靠地工作,那么您需要其他解决方案,如下所示。

此外,在驱动接近逻辑电平阈值的数字非迟滞输入时应小心,因为会发生电流消耗。事实上,考虑简单的CMOS逆变器,如下所示:当输入电压接近VDD/2时,两个MOSFET都处于ON状态,因此直流路径电流将从VDD流向GND。

64b83770-8017-11ed-8abf-dac502259ad0.png

上图是CMOS逆变器的内部电路。如果“IN”信号处的电压接近VDD/2,则两个MOSFET都将处于ON状态,并且电流将在VDD和GND之间流动

优势:

无需其他组件

简单

劣势:

降低噪声裕量,容易收到干扰

仅与某些逻辑族可靠地工作

2、使用逻辑门电路

74HCTxx 系列是具有 TTL 兼容逻辑电平的 CMOS 器件(具有 TTL 兼容输入电平的所有其他 5V 逻辑系列也可以正常工作)。特别是,输入高压电平为2V,远低于CMOS高输出电压。通过在系统之间插入任何具有TTL兼容输入电平的逻辑门(请参阅下面的示例),就可以实现合适的电压电平转换器。

64d46026-8017-11ed-8abf-dac502259ad0.png

任何具有TTL兼容输入的非反相逻辑门都可以可靠地充当转换器。

优势:

可与 CMOS 和 TTL 器件配合使用

只需要一个电源

劣势:

需要一个外部 IC(可能还需要其去耦电容等器件)

3:使用二极管偏移

通过直接连接到5V CMOS输入,我们看到主要问题是3.3V输出的高电平输出电压,该输出电压不足以仅处于安全区域(最多3.3V,而最小值为3.5V)。相反,低电平CMOS输入的最大电压是VDD的30%,即5V系统中为1.5V。因此,如果我们能在CMOS输出上增加小的偏移,那就太好了。出于这个原因,可以简单地使用二极管和上拉电阻。

但是,通过这种方式,电流将流入我们3.3V系统的输出保护二极管。这种电流应尽可能小,以避免损坏3.3V系统。

64fe490e-8017-11ed-8abf-dac502259ad0.png

上述电路中,当3.3V系统的output为高电平时,5V系统的input电压为3.3V+0.7V(二极管的压降),当3.3V系统的output为低电平时,5V系统的input电压为0.7V(二极管的压降)。

在测试过程中需要注意,即使在3.3V系统为高电平状态下,3.3V系统也会有电流流入。这可能会导致 3.3V 设备上出现问题。

更好的解决方案是使用额外的二极管。由于新二极管直接连接到3.3V电源轨(它不必通过我们的IC),因此电流将流向电源。

651c8c70-8017-11ed-8abf-dac502259ad0.png

在上述电路中,当输出为高电平时,电流不会流入输出,而是流过D2。

尽管如此,这两种解决方案都有一个固有的问题:如果3.3V系统是低功耗,那么它这样就会消耗非常低的电流。如果总电流消耗低于流入电阻器的电流,则3.3V电源轨实际上将由5V通过电阻器和二极管供电

这可能是一个问题,因为如果3.3V系统没有消耗足够的电流,3.3V电压可能会增加到约4.3V,这可能会损坏3.3V系统本身。

654244ce-8017-11ed-8abf-dac502259ad0.png

为了解决这个问题,有一个简单的解决方案是放置第二个电阻,它至少吸收流入D2的电流(约1V / R1。因此,R2 应为 R1 的 3.3 倍或更低)。

上图中加上R2,其值最多比R1大3.3倍,这样才能确保流入D2的电流将“耗散”,并且不会增加3.3V电压。

上拉电阻的值应计算在内,以便:

它足够低,可以给我们所需的速度。

它比输入阻抗小得多(尽管在CMOS器件中,这不是一个大问题)。

它足够大,不会使CMOS输出电压过载,特别是在低电平下。对于那些具有相对较高输出阻抗的CMOS输出(CD40xx系列)来说,这尤其是一个问题。

它足够大,以避免过多的电流流入3.3V电源轨。

它足够大,可以将电流消耗保持在可接受的水平。

优势:

便宜

劣势:

比其他解决方案慢得多。

需要仔细选择电阻值:避免损坏,获得正常的速度,并将高低压保持在正确的范围内。

相对较高的电流消耗。

需要 2 到 4 个附加组件。

噪声裕量差。

需要一个低阻抗驱动输出。

需要相对较高的输入阻抗

4:电阻偏移

我们也可以使用电阻分压器引入失调。

这种简单的解决方案比二极管偏移更便宜(但速度稍慢),并且仍然存在电流流入输出引脚的问题。

656338c8-8017-11ed-8abf-dac502259ad0.png

一个简单的电阻分压器将允许为我们的3.3V输出增加一个失调。

更好的解决方案是在输出中添加一个虚拟负载,该负载将吸附来自5V通过R1和R2的电流。另一种看待这一点的方法是,断开输出,根据计算值,R1-R2-R3将形成电阻分压器,R3两端的电压最多为3.3V。图中指示的值以术语或通用“R”值表示。

65824088-8017-11ed-8abf-dac502259ad0.png

当输出为3.3V时,添加R3将允许将来自5V的任何电流分流至地(而不是通过输出引脚分流至3.3V。

当输出为0时,电压将为5V *(R2/(R1+R2)),即1V,低于1.5V阈值。当输出为3.3V时,电压将为5V * (R2/(R1+R2)) + 3.3V * (R1/(R1+R2)) = 3.64V。通过调整R1/R2比率可以实现更好的高电平值,但必须考虑到,当输出为0V时,电压应小于1.5V。

注意:我们分别以0和3.3V作为CMOS输出电压,当输出分别为低电平和高电平时。虽然高电平电压没有问题(除非R3太低)(因为它被R1 + R2拉起),但低电平电压将根据流入输出的电流而增加。

优势:

比二极管偏移量便宜。

劣势:

比二极管失调解决方案慢,特别是在高到低的过渡中,因为电流流过R1和R2,相对于二极管,R1和R2的阻抗要高得多。

需要仔细选择电阻值,以避免损坏,获得适当的速度,并将高低压保持在正确的范围内。

相对较高的电流消耗。

需要 2 到 3 个附加组件。

噪声裕量差。

需要一个低阻抗驱动输出。

需要相对较高的输入阻抗。

5、三极管或MOS管转换

如果可以接受或需要反相信号,则可以使用简单的MOSFET/BJT。否则,可以使用其他阶段。

65a4a6be-8017-11ed-8abf-dac502259ad0.png

上图中是简单的三极管的反相器。级联两个将允许实现直接信号,而不是反相信号。

65c82b98-8017-11ed-8abf-dac502259ad0.png

上图是MOSFET的 版本,使用的器件更少,但价格更昂贵。

优势:

相对于二极管偏移,尺寸要简单得多。

更好的噪声裕量,因为低电平和高电平都接近电源轨。

劣势

需要 2/3 个外部组件。

它是反相的。

相对较慢的由低变为高的时间。

相对于MOSFET实现,BJT实现实际上相对较慢,因为BJT关断特性相对较慢。

当MOSFET/BJT处于导通状态时,消耗相对较高。

需要相对较高的输入阻抗

6、MOS管转换

65e19d1c-8017-11ed-8abf-dac502259ad0.png

上图的工作原理很简单。当输出为3.3V时,MOSFET将处于关断状态,因为VGS=0V,因此输出由上拉电阻保持在5V。如果输出为低电平,则 VGS 为 3.3V。假设MOSFET具有逻辑电平阈值(当VGS = 2.5V时应完全导通),MOSFET将导通,将低电平值传递至5V输入。

优势:

双向

相对简单的解决方案。

它不会使输入反相,就像通用源配置中的单个 MOSFET/BJT 一样。

劣势:

需要 2 个外部元件

相对较慢。

需要一个低阻抗驱动输出以避免过载。

功耗相对较高。

需要相对较高的输入阻抗。

7、三极管转换

660943d0-8017-11ed-8abf-dac502259ad0.png

这种方案与上面的MOS管方案类似,只是这里使用了三极管。工作原理是相同的,当output输出3.3V时,三极管截止。此时Input的电压被电阻上拉到5V。当output输出0V时,三极管导通,input的电压为三极管的Vce电压。

它与前一个电路具有相同的优点,但也引入了一些额外的缺点。

优势:

双向

相对简单的解决方案。

它不会使输入反相,就像通用源配置中的单个 MOSFET/BJT 一样。

劣势:

需要 3 个外部组件。

相对较慢。

需要一个低阻抗驱动输出以避免过载。

功耗相对较高。

需要相对较高的输入阻抗。

BJT饱和集电极至发射极电压(VCESAT)被添加到低电平输出电压中。不过,一般不印象使用。

8:使用电平转换IC

专用电平转换器 IC(如 74LVC1T245)将满足您所需的一切需求,与分立式解决方案相比具有更好的性能,但价格要高得多。

有许多变体,例如具有不同速度(和价格)的更多通道(74LVC8T245,74LVC16T245)或不同的逻辑系列(74ALVT162245)。

当您需要高性能 3.3V 至 5V 电平转换(通常在高速总线、时钟等中)时,请使用此解决方案。

662e42de-8017-11ed-8abf-dac502259ad0.png

与其他解决方案相比,电平转换器通常性能更好,特别是在噪声裕量和速度方面(直接连接除外)。

优势:

快速(即使不如直接连接快,因为增加了一个小的延迟)。

高噪声裕量

劣势:

需要一个电平转换器,可能还需要 2 个去耦电容器(每个电源域一个)。

贵。

9、使用隔离器件

该解决方案是“任何电压到任何电压”的转换器,因此它也可用于3.3V到5V的转换。有 4 种配置,具体取决于您的要求。

6657d86a-8017-11ed-8abf-dac502259ad0.png

上图中是采用光耦合器的非反相配置。

667c67fc-8017-11ed-8abf-dac502259ad0.png

上图是使用使用光耦合器的反相配置。

请注意,某些配置需要强大的低电平输出驱动器(而在高级输出强度方面没有任何要求),而另一种配置则需要强大的高级输出驱动程序。

同样,输出将提供一个强的上拉/下拉路径(通过耦合器)和一个较弱的上拉/下拉路径(分别通过下拉/上拉电阻)。

您可以使用基于电容式、巨磁阻或磁耦合的更新器件,而不是使用标准光隔离器,即使这些器件通常要昂贵得多。

优势:

电气绝缘。

更好的安全性。

“任何电压到任何电压”转换。

您可以选择反转信号。

劣势:

通常速度较慢,除非使用高速隔离器。

相对昂贵。

相当笨重的设备。

高功耗。

输出和输入阻抗有一些限制。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • CMOS
    +关注

    关注

    58

    文章

    5154

    浏览量

    233348
  • 二极管
    +关注

    关注

    144

    文章

    9012

    浏览量

    161354
  • 转换器
    +关注

    关注

    27

    文章

    8206

    浏览量

    141812
  • 晶体管
    +关注

    关注

    76

    文章

    9054

    浏览量

    135211

原文标题:9种实用的将3.3V输出连接到5V输入的方法!

文章出处:【微信号:mcu168,微信公众号:硬件攻城狮】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    求助大神,输入220V交流,输出3.3V,正负5V~

    求大神帮忙,需要一个电源电路,输入220V交流,输出3.3V和正负5V(最大输出电流1A或者1.
    发表于 05-12 11:41

    STM32(3.3V)怎么接ULN2003A(5V输入

    STM32(3.3V输出)要怎么连接ULN2003A(5V输入)来驱动继电器的?
    发表于 04-13 11:24

    请问多电源共地+3.3V和 +5V,±5V的地能连接在一起吗?

    我的一个模数混合系统采用背板插接一个控制母板和多个前端子板的模式,其中涉及三DC-DC电源输出,+3.3V提供数字电路供电,+5V提供DDS和ADC的模拟电路部分供电,±
    发表于 04-17 08:56

    DN311双输出电源为3.3V5V输入的FPGA供电

    DN311双输出电源为3.3V5V输入的FPGA供电
    发表于 05-24 14:08

    请问当跳线J9连接到3.3V时PSoC4 ADC可以用单端检测0V-5V吗?

    当跳线J9连接到3.3V时,PSoC4 ADC可以用单端检测0V-5V吗?我想把Vref(P1(7))连接到
    发表于 07-16 07:30

    实用技巧: 5V3.3V电平的19种方法

    3.3V5V直接连接 3.3V 输出连接到
    发表于 09-03 10:47

    单片机5V3.3V电平,原来有19种方法

    应用的其他需求选择器件的连接方法。表 4-1 是本文档所使用的输出输入阈值。在设计连接时,请务必参考制造商的数据手册以获得实际的阈值电平。
    发表于 09-10 16:38

    5V3.3V电平的同步数字输出

    我有一个项目与PSoC 5LpTe饰面与5V3.3V外部组件。有没有一方式有两个不同的输出引脚连接到
    发表于 09-16 11:02

    如何3.3V Spartan 6 GPIO连接到5V ADC输出上?

    嗨,我想将5V ADC的输出引脚连接到运行3.3 V的Spartan 6 GPIO。我正在考虑使用带有串联电阻的ESD保护二极管,并将其
    发表于 04-29 10:01

    如何5V数字输入连接到Virtex 5 FPGA

    /10835.html),只要电流不超过10mA,FPGA的数字输入电压实际上可能会略高于3.3V。他们建议串联一个电阻,以保证这一点。但是,dSPACE板的数字输出(其电压可能低于5V
    发表于 06-19 10:29

    3.3v5v电平转换电路

      如果模块采用3.3V供电,跟mcu(3.3V电平)直接通信,只需要将模块的TXD加到MCU的RXD,模块的RXD接到MUC的TXD上即可。当模块电平与MCU电平不匹配时,如MCU
    发表于 09-02 17:51

    5V3.3V的设计技巧分析

    9个案例5V3.3V
    发表于 03-08 07:29

    单片机电路设计分析:9个案例5V3.3V

    使用的晶体管。技巧十二:5V3.3V电阻分压器可以使用简单的电阻分压器 5V 器件的输出降低到适用于
    发表于 05-09 06:30

    求一3.3V输出控制5V继电器的方法

    5V 12V 24V的继电器 是不是说加在线圈两端的电压,可以让磁铁吸下来的电压?不是开关两头的电压吧··?HRS4 5V继电器 是不是可以用5V
    发表于 03-14 14:35

    5v3.3v芯片连接的总线用电阻分压行吗?

    我用的开发板上有5v3.3v的电源,开发板上的芯片用的是3.3v供电,我叫他芯片A,我现在要接的芯片是5v的,我叫他芯片B,5v我从开发板
    发表于 04-18 10:47