0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

考虑射频系统中的GSPS ADC

星星科技指导员 来源:ADI 作者:Wyatt Taylor 2022-12-15 10:37 次阅读

下一代无线电平台正在以越来越快的速度转向直接射频采样架构。这种架构可以显著减小无线电的尺寸、重量和功耗(SWaP),但它带来了新的挑战,即需要将数据转换器仿真RF器件,而不是基带器件。本文将提供一种分析RF系统中GSPS ADC的方法。

介绍

在过去的20年中,模数转换器ADC)采样率取得了令人难以置信的进步,从2000年最先进的不到100 MSPS到当前的数据转换器通常采样高于10 GSPS。随着ADC采样速率的提高,数据转换器可以数字化的输入频率和瞬时带宽也随之增加。这种频率的提高使GSPS ADC能够消除外差级(如表1所示),并将数据转换器拉近RF天线,从而实现无需外差级的直接RF采样架构。这种转变可能会给系统和RF工程师带来挑战,因为ADC的行为与传统RF器件(如混频器、放大器和开关)不同。本文旨在解决GSPS ADC的三个关键RF方面:动态范围、杂散规划和噪声性能。

模数转换器动态范围

接收器动态范围是一个常用的性能指标,它指示 信号可以有多小,同时在 存在非常大的信号。在传统的外差接收器中,动态 范围通常会受到非线性RF器件(通常是混频器)的限制。这 两个关键的单独性能指标相结合,为动态范围提供信息 是噪声系数 (NF) 和输入三阶交调截点 (IIP3)。NF 通知 小信号接收能力,而IIP3通知上限 大信号处理。

NF和IIP3通常都不在GSPS ADC的规格表中,但 存在用于提取这些参数的信息。首先,考虑噪声系数。 在ADC数据手册中,这些规格及其相关单元几乎 始终提供(请参阅表 2)。

规范 单位
满量程 (FS) 输入电压 V p-p
输入阻抗 (R在) Ω
噪声频谱密度 (NSD dBFS/Hz

计算噪声系数 (NF)

根据这三个参数,可以计算出GSPS ADC的噪声系数。第一 满量程输入电压需要从V p-p转换为dBm。

poYBAGOaiGyAObj5AAAoNfpeUoE611.jpg?la=en&imgver=1

其次,噪声频谱密度(NSD)需要从dBFS/Hz转换 参数转换为 dBm/Hz 参数。

poYBAGOaiG6AXMZ5AAAe3yazYS4766.jpg?la=en&imgver=1

最后,将以dBm/Hz为单位的NSD与本底热噪声进行比较 计算 GSPS ADC NF。

pYYBAGOaiHCAQYIGAAAdVAxZFlU641.jpg?la=en&imgver=1

计算输入三阶 截点 (IIP3)

计算GSPS ADC的IIP3同样简单。在ADC数据手册中, 应存在表 3 中所示的参数和相关单位。

规范 单位
IMD3 输入功率 (P在) dBFS
IMD3 级别 分贝

要计算IIP3,必须首先将输入音转换为dBm,然后 计算很简单:

poYBAGOaiHGAHus2AAAYNfPBG-w270.jpg?la=en&imgver=1

pYYBAGOaiHKASVMAAAAavN23wFs289.jpg?la=en&imgver=1

使用公式4和5,数据中指定的以数据转换器为中心的参数 表可以转换为系统和射频设计工程师的射频参数。 本文末尾是使用公式4和5的示例计算。

虚假规划

GSPS ADC中另一个经常被误解的概念是 规划,重大虚假内容。在传统的外差接收器中, 最常见的杂散信号源是混频器杂散,特别是M×N混频器杂散。RF和系统设计具有杂散表、频率规划和 过滤技术,以尝试减轻这些混频器杂散。用于直接射频采样 系统,没有 M×N 杂散,因为没有混频器。相反,数据 转换器本身是杂散的最重要来源,因此这些伪影 必须很好地理解。

在外差接收器中,数据转换器采样速率设置得足够高 以满足接收器通道所需的瞬时带宽,通常 大约 2.5× 带宽。在直接RF接收器中,数据转换器 采样率可能比所需的高几个数量级 通过瞬时带宽。这称为过采样,它有 对杂散和噪声规划产生重大影响。

直接RF采样架构中值得关注的两个最大的杂散信号 是二次谐波失真 (HD2) 和三次谐波失真 (HD3)。 这些杂散可以发生在ADC的单个奈奎斯特区内,也可以 别名或环绕相邻奈奎斯特区并返回到所需的 乐队。两个例子说明了这个概念。具有采样速率的高速ADC 的 6 GSPS 具有从直流到 3 GHz 的第一个奈奎斯特区和第二个奈奎斯特区 从 3 GHz 到 6 GHz。载波频率为 800 MHz 的输入正弦波将 创建一个 1.6 GHz 的 HD2 产品和一个 2.4 GHz 的 HD3 产品 — 在本例中为 输入音、HD2 和 HD3 都位于同一个奈奎斯特区。对于第二种情况, 将载波频率从 800 MHz 增加到 1.8 GHz。现在是HD2产品 将下降到3.6 GHz,HD3产品将下降到5.4 GHz - 两者都是 位于第二个奈奎斯特区。这些 HD2 和 HD3 产品将别名为 第一奈奎斯特区分别为2.4 GHz和600 MHz。HD2 产品别名 在第一个奈奎斯特区中将出现在 2.4 GHz 中,HD3 产品别名在 第一个奈奎斯特区将出现在600 MHz。第二次使用有什么有趣的地方 情况是,现在HD2和HD3产品都高于和低于所需的水平 语气。优化此频率规划对于直接RF采样至关重要 建筑和工程师

一个常见的问题是“我可以用多少瞬时带宽实现 最高的无杂散动态范围(SFDR)?对于直接RF采样架构,这个问题可以解释为“多少瞬时带宽” 我可以在避免HD2,HD3及其别名产品的同时实现吗?分析这个 问题很复杂,因为答案会随着输入频率而变化。有 可用的工具,例如ADI公司频率折叠工具,可以 帮助工程师了解潜在的杂散,但图 1 中的图是 第一和第二奈奎斯特区的全面总结。

pYYBAGOaiHSAG9WYAAE_tVfqhMI141.jpg?h=270&hash=B1B4D9D4043E9BD52FF06E3B7275D9B4&imgver=1

图1.HD2 和 HD3 区域,用于直接射频采样 ADC。

有八个区域用于带宽规划,每个区域都有一个屏障,M×除以2 或 N×除 3 边界。这样,与混频器虚假规划有相似之处。在一个区域内,标识的 BW.MAX是最高的瞬时带宽 在该区域可以实现,但载波频率和带宽组合将达不到该最大值。此图表旨在给出射频 和系统工程师有机会优化采样率、载波频率、 以及以连贯的方式做出带宽决策,从而优化接收器的性能。当选择这些参数的组合时,避免HD2和 HD3,那么最大的杂散可能来自时钟电源或隔离效应 在数据转换器中,但这些杂散信号通常比HD2低20 dB。 这种优化可以显著提高接收器的SFDR性能。

噪声性能

正如所审查的那样,过采样对于虚假规划很重要,但同样如此 对噪声性能很重要。在外差接收器中,ADC采样 速率与所需带宽匹配良好,噪声性能 数据转换器直接映射到接收器的噪声性能。这种噪音 性能通常指定为信噪比 (SNR)。另一个关键 噪声规格为NSD,如“计算噪声系数”一节所述 (NF)。SNR和NSD由以下方面相关:

poYBAGOaiHaAH6kdAAA2rgwGQxY245.jpg?la=en&imgver=1

随着NSD性能的提高,信噪比也将得到改善。在过采样中 直接RF采样架构,数据转换器中的噪声不直接 映射到接收器的噪声性能。过采样率必须 也被考虑。在过采样接收器中,数字化信号必须去 通过抽取滤波器实现所需的瞬时带宽。这些 抽取滤波器通常是半带或第三波段滤波器,但它们可以采用 其他订单。只要抽取滤波器本身经过精心设计, 它们可以提供几乎无噪声的带宽降低,这对于 系统噪声性能。接收器中的总体抽取比为 所有抽取滤波器值的级联乘积。例如,如果接收器 使用四个级联半带滤波器,则整体抽取比为 2×2×2×2 或 16.重述SNR方程并考虑抽取可提供 以下内容:

pYYBAGOaiHiARIquAAA_ZvQ5qbk230.jpg?la=en&imgver=1

对于给定的采样速率,ADC的NSD是固定的。因此,随着抽取的增加, NSD保持不变,接收器的带内SNR将增加。 对于理想的抽取滤波器,这意味着 过采样直接RF采样架构将使SNR提高3 dB。实际抽取滤波器会导致一些噪声下降,但通常小于 每个滤波器的十分之一分贝。根据公式7中的示例,总抽取 的 16× 将使接收器的 SNR 提高 12 dB,这是非常 重要!

将一切整合在一起

提到的三个概念具有最好通过以下方式理解的相互作用 举个例子。AD9082是一款先进的直接RF采样收发器,具有 两个 6 GSPS ADC 和四个 12 GSPS 数模转换器DAC)。出于本分析的目的,重点仅放在ADC上。性能参数 对RF和系统设计人员很重要的内容从数据手册中提取 并在表 4 中列出。

规范 价值 单位
采样率 6 普惠制
满量程 (FS) 输入电压 1.475 V p-p
输入阻抗 (R在) 100 Ω
噪声频谱密度 (NSD) –153 dBFS/Hz
IMD3 输入功率 (P在) –7 dBFS
IMD3 级别 –77* 分贝
*数据手册规格为 –84 dBFS,输入为 –7 dBFS,相当于 –77 dBc

计算本文介绍的重要RF参数:

poYBAGOaiHmADev3AACT3Bz9eiw959.jpg?la=en&imgver=1

AD9082的IIP3比器件的噪声系数高10 dB以上。这 是动态范围的一个关键方面,表明该器件能够承受非常大的干扰信号,同时仍能检测到较小的所需信号。 作为参考,高性能混频器的噪声系数通常为~10 dB,并且 IIP3 为 >20 dBm,也显示了两种规格之间的 >10 dB 差距。

对于杂散和噪声规划,将图表一起显示是有意义的。 图2显示了AD9082在1.2 GHz单音输入下的SFDR和SNR图。

poYBAGOaiHuAI5ZfAAC_jJViloI132.jpg?h=270&hash=FABA6C8BED6D904AF6FDC5D2DB309686&imgver=1

图2.测量的AD9082的SNR和SFDR与抽取的关系。

随着抽取的增加,SFDR 和 SNR 的性能都会得到改进 被观察。对于SFDR,增加是通过过滤掉HD2产品获得的。当抽取从 2× 增加到 4×时,HD2 产品会脱离带外,并且 被数字过滤掉。从 8× 抽取到 16× 时,HD3 产品会脱落 的频段,并被数字滤除。对于高于 8 的所有抽取设置×SFDR 的AD9082大约为100 dB或更高。第一个和最后一个数据的FFT 点显示性能的提高。适当的频率规划导致 HD2、HD3 和其他杂散产物脱离所需音调的带外 在 1.2 GHz 时,在所需的瞬时带宽内增加 SFDR。

pYYBAGOaiH6AE6teAAD6KdXsJHY616.jpg?h=270&hash=F89F2CA205FC9AEDCF85AB043257E399&imgver=1

图3.AD9082无抽取。测得的信噪比为56.4 dBFS,测得的SFDR为67 dBc。

poYBAGOaiIGANCVZAADlwJXv-gY208.jpg?h=270&hash=F07003708F57F71A8ADCBD2E534DCBB6&imgver=1

图4.抽取设置为96×的AD9082。测得的信噪比为 72.8 dB,测得的 SFDR 为 105 dB。

SNR是一种更线性的改进,因为抽取滤波器减少了 接收器链的集成噪声。在没有抽取的情况下,信噪比为 56.4 dBFS;在 8×抽取,信噪比为63.5 dBFS;在抽取 96× 时,信噪比为 72.8 dBFS。 相比之下,~100 MSPS的同类最佳数据转换器性能 AD9467和LTC2208等器件的SNR为75 dB,SFDR为100 dBc。 外差信号链长期以来一直要求这种性能 其中常用AD9467等ADC。AD9082可以实现 相同的噪声和动态范围,同时消除外差信号链尺寸, 重量、功率和成本,而且它还能够扩展到更高的瞬时 所需带宽!

总结

直接RF采样架构为RF和系统设计人员提供了 比任何其他架构都更多的设计权衡。但是翻转 该数组的一面是,围绕样本需要做出艰难的决定。 速率、带宽、动态范围、杂散和噪声。现代直接射频采样 然而,设备可以应对挑战!如以下示例所示 文章,AD9082可以编程为多种模式。在宽带模式下, AD9082可实现~56 dBFS的信噪比和~70 dBc的SFDR,并通过 软件重新配置为窄带模式,AD9082可实现SNR ~73 dBFS 和 SFDR 为 ~105 dBc。窄带和窄带之间的灵活性 宽带模式在保持同类最佳性能的同时是独一无二的 适用于AD9082等器件。它还要求工程团队设计 这些直接RF采样收发器考虑了接收器设计的许多方面 同时优化无线电设计。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 射频
    +关注

    关注

    101

    文章

    5361

    浏览量

    165848
  • RF
    RF
    +关注

    关注

    65

    文章

    3025

    浏览量

    165654
  • 无线电
    +关注

    关注

    58

    文章

    2071

    浏览量

    115102
收藏 人收藏

    评论

    相关推荐

    DC–DC 转换器为 GSPS ADC 提供高效输电网络

    中都是不可或缺的组成部分。从通信接收机和电子测试测量到军事和航空航天,这些系统在不同的应用各有不同。硅片处理技术的发展(65 nm CMOS、28 nm CMOS等)使高速 ADC 得以跨越
    发表于 05-28 10:31

    ADC12D1600RFIUT/NOPB 12 位、2.0/3.2 GSPS 射频采样 ADC订货

    ADC12D1600RFIUT/NOPB 订货***黄小姐微信同号 12 位、2.0/3.2 GSPS 射频采样 ADCThe 12-bit 3.2- and 2-GSPS
    发表于 07-30 07:21

    探究宽带GSPS模数转换器(ADC)

    的全部带宽,因为关于样本的信息要到ADC处理完信号之后才能确定。 现在,高性能GSPS ADC让数字下变频(DDC)功能在信号链前移,进驻到ADC
    发表于 08-06 06:40

    探究宽带GSPS ADC的DDC(第1部分)

    ,因为关于样本的信息要到ADC处理完信号之后才能确定。现在,高性能GSPS ADC让数字下变频(DDC)功能在信号链前移,进驻到ADC内部
    发表于 10-26 11:16

    DC–DC转换器为GSPS ADC提供高效输电网络

    不同的应用各有不同。硅片处理技术的发展(65 nm CMOS、28 nm CMOS等)使高速 ADC 得以跨越 GSPS(每秒千兆采样)门槛,同时提供12位或14位性能。对于系统设计
    发表于 10-29 16:53

    GSPS ADC搭配DC-DC转换器,提高输电网络效能

    CMOS、28 nm CMOS等)使高速 ADC 得以跨越 GSPS(每秒千兆采样)门槛,同时提供12位或14位性能。对于系统设计人员来说,这意味着能用于数字处理的采样带宽更宽。出于环境和成本方面的
    发表于 10-30 11:52

    认识宽带GSPS ADC的无杂散动态范围

    (ENOB)、输入带宽、无杂散动态范围(SFDR)以及微分或积分非线性度等。对于GSPS ADC,最重要的一个交流性能参数可能就是SFDR。简单而言,该参数规定了ADC以及系统从其他噪
    发表于 11-01 11:31

    通过输电网络合探讨GSPS ADC性能

    到航空航天,这些系统在不同的应用各有不同。。。  硅片处理技术的发展(65 nm CMOS、28 nm CMOS等)使高速 ADC 得以跨越 GSPS(每秒千兆采样)门槛,同时提供1
    发表于 11-20 10:50

    采用ADC083000/B3000的3GSps超高速ADC系统设计

    包含千兆采样率ADC系统设计会遇到许多复杂情况。面临的主要挑战包括时钟驱动、模拟输入级和高速数字接口。本文探讨了如何才能克服这些挑战,并给出了在千兆赫兹的速度下进行系统优化的方法。在讨论
    发表于 05-30 05:00

    TIDA-00479 GSPS ADC的最理想时钟源参考设计

    描述ADC12D1600RFRB参考设计提供了展示高速数字转换器应用(其中整合了时钟、电源管理和信号处理)的平台。此参考设计利用 1.6 GSPS ADC12D1600RF 器件、板载 FPGA
    发表于 09-20 07:01

    ADC12DJ3200AAV 射频采样模数转换器 TI品牌 特性与应用

    ADC12DJ3200AAV ADC12DJ3200系列- 12 位双通道 3.2GSPS 或单通道 6.4GSPS 射频采样模数转换器 (
    发表于 06-16 14:37

    一文知道宽带GSPS ADC中的无杂散动态范围是多少

    在为高性能系统选择宽带模数转换器(ADC)时,需要考虑多种模拟输入参数,比如,ADC分辨率、采样速率、信噪比(SNR)、有效位数(ENOB)、输入带宽、无杂散动态范围(SFDR)以及微
    的头像 发表于 07-10 01:52 8846次阅读
    一文知道宽带<b class='flag-5'>GSPS</b> <b class='flag-5'>ADC</b>中的无杂散动态范围是多少

    考虑射频系统中的GSPS ADC

    直接RF采样架构为RF和系统设计人员提供了 比任何其他架构都更多的设计权衡。但是翻转 该数组的一面是,围绕样本需要做出艰难的决定。 速率、带宽、动态范围、杂散和噪声。
    的头像 发表于 06-15 16:01 702次阅读
    <b class='flag-5'>考虑</b><b class='flag-5'>射频</b><b class='flag-5'>系统</b>中的<b class='flag-5'>GSPS</b> <b class='flag-5'>ADC</b>

    AFE7686IABJ 四发四收多频段射频采样收发器,具有 14 位 9-GSPS DAC 和 3-GSPS ADC

    AFE7686IABJ 四发四收多频段射频采样收发器,具有 14 位 9-GSPS DAC 和 3-GSPS ADC
    的头像 发表于 12-14 09:47 975次阅读
    AFE7686IABJ 四发四收多频段<b class='flag-5'>射频</b>采样收发器,具有 14 位 9-<b class='flag-5'>GSPS</b> DAC 和 3-<b class='flag-5'>GSPS</b> <b class='flag-5'>ADC</b>

    ADC12D800/500RF射频采样GSPS ADC英文手册

    12 位 1.6/1.0 GSPS ADC12D800/500RF 是一款射频采样 GSPS ADC,可直接对高达 2.7 GHz 及以上的
    发表于 09-20 15:02 0次下载