0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

为您的提升带来更多冲击:以更低的电池电压驱动更重的负载

星星科技指导员 来源:ADI 作者:Simon Bramble 2022-12-14 11:30 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

自举是一种可应用于大多数升压转换器的技术 并使转换器能够在驱动时低至较低电压运行 重物。许多便携式设计需要升压转换器来转换低电平 电池电压进入更高,但随着电池电压衰减, 升压转换器FET的驱动减少,有时可以减少 输出可用的电流。引导克服了这个问题 并购买额外的电池寿命,同时提高重负载下的效率。

这些提升是为工作而设计的

ADP1612是一款低成本、高效率升压转换器,工作频率为 1.3 MHz,非常适合需要物理处理的消费电子电路 小。它具有一个关断引脚,可将静态电流降至2 μA以下 工作在低至 1.8 V 的输入电压下,非常适合电池供电的电子设备。然而,随着电池电压的下降,其峰值电流 瀑布。如果电池在最后几个小时需要轻轻处理,这可能是一个好处,但这也可能导致在电池电量不足的情况下驾驶重负载时出现问题 输入。自举克服了这个问题,并提供高输出电流 具有高效率,同时允许电池电压低至 较低级别。

从 升压转换器

图1显示了ADP1612的标准评估板。200 mΩ 电流 检测电阻与电池输入串联以测量输入 当前。在电池输入端增加了一个大的电解电容器 平滑电感电流峰值的电路,使平均电池电流 可以高精度地测量检测电阻两端。 电池电压是用数字电压表测量的,因此, 输入功率可以通过将电池电压乘以输入电流来计算。 阻性负载被添加到输出端,转换器的效率 通过将输出功率除以输入功率来计算。

403128-fig-01.svg?h=270&hash=A1E228F821845A5150DA4185ED3D1E91&imgver=1

图1.ADP1612的评估套件。

探测开关节点(SW)告诉我们很多关于DC-DC转换器的信息 执行。当 FET 导通时,电感电流斜坡上升,导致 开关节点底部电压斜坡,与FET的导通成正比 电阻。此电压越低,FET 的导通电阻越低。因此 给定电流下FET中的损耗越低。图 2 显示了交换机 节点,采用非自举配置,电池电压为 2 V。底部 的开关节点电压显示约180 mV的峰值。

poYBAGOZQ12AVifDAADYS9t4iyE547.jpg?h=270&hash=1AB29D16C972CC9429AA32C687C2AB28&imgver=1

图2.开关节点电压,2 V 输入,非自举。

将电池电压增加到3 V得到的开关节点波形如 图3.在这里,我们注意到由于电池电量较高,占空比已下降 电压,而且开关节点的低部分电压明显处于 较低电平,峰值约为80 mV。但是,由于FET电流为3 V 电池电压低于 2 V 电池电压,很难看到 如果ON电阻确实降低了。

poYBAGOZQ16AR4nfAADXXsMYqaE209.jpg?h=270&hash=73BFCFB6C6F5D3C7600398449E010640&imgver=1

图3.开关节点电压,3 V 输入,非自举。

然后将图1中的电路转换为自举配置。 自举涉及连接 V在ADP1612至输出端的引脚 电压。一旦器件启动,它就会由较高的输出电压供电, 因此,在ADP1612不知道 电池电压水平。修改后的电路如图4所示。

403128-fig-04.svg?h=270&hash=1D2988309944FE24033393C9449CAC3F&imgver=1

图4.引导 V在引脚从输出电压。

使能引脚可以连接到电池电压 V巴特或输出 电压。将其连接到电池电压可置位欠压锁定 (UVLO) 如果电池电压低于大约 1.7 V,则在连接时 输出电压允许ADP1612保持开关,即使电池 电压已经下降到远低于此的电压。

图5显示了非自举和自举的效率结果 电池电压为 2 V 且输出电压测量的配置 的 4.95 V。

403128-fig-05.svg?h=270&hash=86CBFD332CCE8929D97DA15599697826&imgver=1

图5.ADP1612采用2 V输入时的效率,采用非自举和自举(b/s)配置。

自举配置的效率曲线由 图5中的实线,在轻负载时明显较低。这主要是因为 器件的静态电流(约4 mA)现在来自输出 电压和有效乘以系数

403128-eq-01.svg?la=en&imgver=1

我们还可以看到,自举电路开始提供效率 改善重负载电流(约260 mA以上)工作时 由于较高的FET驱动,电池电压较低。

图6和图7显示了自举开关节点电压的底部 模式。需要注意的是,自举仅影响电源电压 到控制器 IC。它不会影响电源路径(电感和输出二极管)。 因此,我们现在可以直接比较2 V自举和非自举开关节点电压(图6和图2)以及3 V自举开关节点电压 以及非自举开关节点电压(如图7和图3所示)。

pYYBAGOZQ2CAJCUcAADiV6Pd9x8033.jpg?h=270&hash=E8730F703672C39231F90144EC4562E5&imgver=1

图6.开关节点电压,2 V 输入,自举。

poYBAGOZQ2KAZ0NEAADfZr8l9_s840.jpg?h=270&hash=AC9CABAC7FE745320356F3EC6FAC894C&imgver=1

图7.开关节点电压,3 V 输入,自举。

使用低电池电压自举具有明显的优势。与一个 2 V 电池电压,非自举开关节点电压峰值为 180 mV 相比之下,自举电路仅为100 mV,表明导通较低 电阻FET,从而降低损耗。似乎很少,如果有的话, 电池电压为 3 V 时自举电路的改进,两者兼而有之 开关节点波形峰值约为80 mV。

你能走多低?

另一个有用的实验是观察电池电压可以多低 在输出电压开始失去稳压之前。图 8 显示了比较 在自举模式和非自举模式之间。

403128-fig-08.svg?h=270&hash=F5B28B8C6AA6A0F957CD59D89A143903&imgver=1

图8.负载电流与最小输入电压的关系

在非自举电路中,我们看到UVLO电路通过电池激活 电压低于约1.7 V,如蓝色曲线所示。相比之下,图4中的自举电路将使能和V连接起来。在引脚连接到输出电压 (5 V),从而击败UVLO,因此允许电路运行至A 电压低得多。但是,电路不能从任何地方产生电力。这 ADP1612具有峰值电流限制;因此,负载电流越高,越高 电池电压需要为固定峰值开关提供负载电流 当前。因此,图8的红色曲线几乎随着负载电流线性增加 增加。

最小工作电压由 转换器,约为 90%。从等式

403128-eq-02.svg?la=en&imgver=1

5 V 输出和 90% 的最大占空比决定了最小电池电量 电压为 0.5 V,与图表中显示的结果一致。

图8令人惊讶的是,非自举电路 可提供比电池电压高于 2.2 V 的自举电路更高的负载电流。这是因为ADP1612的静态电流更高 在自举模式下,因为它从输出电压运行。此外, ADP1612的效率低于100%,因此进一步提高了所需的 给定负载电流下电路的输入电流。这导致略微 与自举模式下所需的输入电压(约 150 mV)相比更高 使用非引导模式。如前所述,自举的好处 对于较高的电池电压和优点,电池电压并不显着 更高的栅极驱动带来的不足以抵消增加的损耗 通过自举电路中增加的静态电流。

其他优点和缺点

自举配置也会对 电路。现在的 V在ADP1612的引脚由输出、电池供电 电压需要比非自举电路高一肖特基 二极管压降。肖特基二极管两端的压降随电流变化而变化: 大约 100 mV(电流为 50 μA 时)至较高电流下的 200 mV 以上。它是 通过实验发现,非自举的启动电压 电路约为1.75 V(等于UVLO阈值),而上升至约1.95 V 用于自举电路。

结论

自举可以应用于任何在启动时不会断开电池电压与输出的升压转换器。 轻负载效率较差的影响可以通过使用具有以下特征的设备来减轻 非常低的静态电流。较高的启动电压通常不是问题 因为电路通常不需要在电池没电的情况下启动。

如果电路的负载电流对于其大部分工作来说都非常轻,或者 高电池电压,那么自举可能不会给你带来任何好处。然而 如果负载很重,并且电路需要继续工作到 电池的最后消亡分钟,那么引导是值得考虑的。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电容器
    +关注

    关注

    64

    文章

    6945

    浏览量

    106613
  • 转换器
    +关注

    关注

    27

    文章

    9365

    浏览量

    155125
  • 电池
    +关注

    关注

    85

    文章

    11360

    浏览量

    141303
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    启动电压 2.5V升压恒流芯片H6912 12V-24V升压36V无频闪调光ic灵活性强

    H6912 是一款专为 LED 恒流照明设计的升压调光驱动器,简洁外围电路和宽适配能力核心优势,能覆盖 2.6-40V 宽输入电压场景。 核心性能与适配能力 恒流精度高,输出电流误
    发表于 10-18 10:00

    COT架构60V转12V2A 动态负载优异音响恒压降压驱动方案H8012A高压

    。 值得一提的是,该芯片搭载了使能控制功能,这一设计带来了显著的优势。它能大幅减少电路外围所需的器件数量,不仅简化了电路设计,还降低了整体成本,因此在电池供电的各类设备中表现得尤为突出,相关应用方案
    发表于 09-18 09:24

    寻求高集成度电池驱动方案?剖析SiLM2661CA-DG的独立双使能与高边保护架构

    延时,可实现对电池的快速保护响应。 双路独立使能:分别控制充电与放电MOSFET,大幅提升系统设计的可靠性与灵活度。 可扩展电荷泵:借助外部电容轻松驱动多颗并联NFET,适应不同功率等级应用。 宽
    发表于 09-02 08:26

    高精度可编程直流负载箱—专攻氢燃料电池充放电测试与动态消纳

    技术的可靠性提升提供了关键技术支撑。以下是其在氢燃料电池领域的具体应用与技术优势: 设备内置可编程电阻网络,支持毫秒级负载切换,可模拟氢燃料电池在实际运行中遇到的阶跃、斜坡、脉冲等复杂
    发表于 08-06 13:15

    新能源汽车预充回路里的车规电容:降低电池接入瞬间的电压冲击

    预充回路中的作用、工作原理、技术特点以及未来发展趋势。 ### 一、预充回路的作用与工作原理 当新能源汽车的高压电池系统首次接入整车电路时,由于母线电容的初始电压零,直接连接会导致极大的瞬时电流
    的头像 发表于 07-29 17:32 859次阅读

    SiLM2660CD-DG 高边NMOS电池管理驱动芯片的革新设计

    电池保护板。 SiLM2660CD-DG高边驱动+双路径隔离重构电池安全管理逻辑,通过预充电机制化解过放电池上电风险,100V耐压与可扩展
    发表于 07-25 09:13

    关于电池负载如何模拟的三大方案

    模拟电池负载在电源测试、电池管理系统(BMS)验证、充电器开发等领域至关重要。电池并非简单的电阻性负载,其特性复杂(
    的头像 发表于 06-17 16:11 589次阅读
    关于<b class='flag-5'>电池</b><b class='flag-5'>负载</b>如何模拟的三大方案

    优化电机控制提高能效

    ,电机系统在能效与性能方面仍有巨大提升空间。 II. 变频驱动器(VFD)的应用 变频驱动器(VFD)在电机调速和能效提升方面的应用日益广泛。通过使电机转速与
    发表于 06-11 09:57

    交流充电桩负载能效提升技术

    随着电动汽车普及率提升,交流充电桩的能效优化成为降低运营成本、减少能源浪费的核心课题。负载能效提升需从硬件设计、拓扑优化、智能控制及热管理等多维度展开,以下结合技术原理与实践方案进行阐述。 一、高效
    发表于 05-21 14:38

    HT7180输入电压2.7-12V输出电压最高12.8V禾润一级代理聚能芯半导体

    ,能够为音箱提供稳定的电源,让音质更加纯净、动听,用户带来身临其境的听觉盛宴。对于移动电源而言,它能将电池的电能高效转换,各种移动设备快速充电,
    发表于 04-24 17:55

    动力电池测试中的直流负载挑战与应对策略

    一、背景与挑战 动力电池作为电动汽车的核心部件,其性能测试需模拟真实工况下的直流负载特性。然而,在测试过程中,直流负载的高功率、动态响应及精度要求带来多重技术挑战: 高功率与能量密度矛
    发表于 04-02 16:05

    Nordic nPM2100:电池供电蓝牙低功耗产品带来超长续航!

    紧凑型 1.9x1.9mm WLCSP 和通用型 4x4mm QFN 封装,现已可提供样品,预计将于 2025 年上半年全面量产。 总之,nPM2100 电源管理 IC 电池供电蓝牙低功耗产品带来
    发表于 03-20 16:52

    电子负载调试方法

    ,使电子负载显示值与标准源一致,提升测量准确性。 三、功能测试 恒流模式测试 :设置电子负载恒流模式,从低电流逐步增加负载电流,观察被测电
    发表于 02-18 16:02

    电子负载电池放电测试中的应用

    进行电池放电测试,确保电池性能的稳定和可靠。 电子负载的基本原理是通过控制内部功率管的导通程度来调节负载电流和功率。这种设备能够精确地检测
    的头像 发表于 01-07 16:41 1439次阅读
    电子<b class='flag-5'>负载</b>在<b class='flag-5'>电池</b>放电测试中的应用

    燃料电池测试负载如何进行负载测试?

    运行后,逐渐增加负载电流,使燃料电池承受实际工况下的负荷。在此过程中,需要持续监测燃料电池的各项参数,如电压波动、温度变化、燃料消耗等,
    发表于 12-16 15:53