0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何用Java几分钟处理完30亿个数据?

人工智能与大数据技术 来源:CSDN 作者:Dream_it_possible! 2022-12-02 09:49 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

1. 场景说明

现有一个 10G 文件的数据,里面包含了 18-70 之间的整数,分别表示 18-70 岁的人群数量统计。假设年龄范围分布均匀,分别表示系统中所有用户的年龄数,找出重复次数最多的那个数,现有一台内存为 4G、2 核 CPU电脑,请写一个算法实现。

23,31,42,19,60,30,36,........

2. 模拟数据

Java 中一个整数占 4 个字节,模拟 10G 为 30 亿左右个数据, 采用追加模式写入 10G 数据到硬盘里。

每 100 万个记录写一行,大概 4M 一行,10G 大概 2500 行数据。

package bigdata;
 
import java.io.*;
import java.util.Random;
 
/**
 * @Desc:
 * @Author: bingbing
 * @Date: 2022/5/4 0004 19:05
 */
public class GenerateData {
    private static Random random = new Random();

    public static int generateRandomData(int start, int end) {
        return random.nextInt(end - start + 1) + start;
    }

    /**
     * 产生10G的 1-1000的数据在D盘
     */
    public void generateData() throws IOException {
        File file = new File("D:\ User.dat");
        if (!file.exists()) {
            try {
                file.createNewFile();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
 
        int start = 18;
        int end = 70;
        long startTime = System.currentTimeMillis();
        BufferedWriter bos = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file, true)));
        for (long i = 1; i < Integer.MAX_VALUE * 1.7; i++) {
            String data = generateRandomData(start, end) + ",";
            bos.write(data);
            // 每100万条记录成一行,100万条数据大概4M
            if (i % 1000000 == 0) {
                bos.write("
");
            }
        }
        System.out.println("写入完成! 共花费时间:" + (System.currentTimeMillis() - startTime) / 1000 + " s");
        bos.close();
    }

    public static void main(String[] args) {
        GenerateData generateData = new GenerateData();
        try {
            generateData.generateData();
        } catch (IOException e) {
            e.printStackTrace();
}
    }
}

上述代码调整参数执行 2 次,凑 10G 数据在 D 盘 User.dat 文件里:

bdbdd9c6-71e2-11ed-8abf-dac502259ad0.png

准备好 10G 数据后,接着写如何处理这些数据。

3. 场景分析

10G 的数据比当前拥有的运行内存大的多,不能全量加载到内存中读取。如果采用全量加载,那么内存会直接爆掉,只能按行读取。Java 中的 bufferedReader 的 readLine() 按行读取文件里的内容。

4. 读取数据

首先,我们写一个方法单线程读完这 30 亿数据需要多少时间,每读 100 行打印一次:

privatestaticvoidreadData()throwsIOException{
    BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream(FILE_NAME), "utf-8"));
    String line;
    long start = System.currentTimeMillis();
    int count = 1;
    while ((line = br.readLine()) != null) {
//按行读取
        if (count % 100 == 0) {
            System.out.println("读取100行,总耗时间: " + (System.currentTimeMillis() - start) / 1000 + " s");
            System.gc();
        }
        count++;
    }
    running = false;
br.close();
}

按行读完 10G 的数据大概 20 秒,基本每 100 行,1 亿多数据花 1 秒,速度还挺快。

bddee56c-71e2-11ed-8abf-dac502259ad0.png

5. 处理数据

5.1 思路一

通过单线程处理,初始化一个 countMap,key 为年龄,value 为出现的次数。将每行读取到的数据按照 "," 进行分割,然后获取到的每一项进行保存到 countMap 里。如果存在,那么值 key 的 value+1。

for (int i = start; i <= end; i++) {
    try {
        File subFile = new File(dir + "" + i + ".dat");
        if (!file.exists()) {
            subFile.createNewFile();
        }
        countMap.computeIfAbsent(i + "", integer -> new AtomicInteger(0));
    } catch (FileNotFoundException e) {
        e.printStackTrace();
    } catch (IOException e) {
        e.printStackTrace();
    }
}

单线程读取并统计 countMap:

publicstatic void splitLine(String lineData) {
    String[] arr = lineData.split(",");
    for (String str : arr) {
        if (StringUtils.isEmpty(str)) {
            continue;
        }
        countMap.computeIfAbsent(str, s -> new AtomicInteger(0)).getAndIncrement();
    }
}

通过比较找出年龄数最多的年龄并打印出来:

private static void findMostAge() {
    Integer targetValue = 0;
    String targetKey = null;
    Iterator> entrySetIterator = countMap.entrySet().iterator();
    while (entrySetIterator.hasNext()) {
        Map.Entry entry = entrySetIterator.next();
        Integer value = entry.getValue().get();
        String key = entry.getKey();
        if (value > targetValue) {
            targetValue = value;
            targetKey = key;
        }
    }
    System.out.println("数量最多的年龄为:" + targetKey + "数量为:" + targetValue);
}

测试结果

总共花了 3 分钟读取完并统计完所有数据。

bded1ab0-71e2-11ed-8abf-dac502259ad0.png

内存消耗为 2G-2.5G,CPU 利用率太低,只向上浮动了 20%-25% 之间。

bdfe657c-71e2-11ed-8abf-dac502259ad0.png

要想提高 CPU 利用率,那么可以使用多线程去处理。

下面我们使用多线程去解决这个 CPU 利用率低的问题。

5.2 思路二:分治法

使用多线程去消费读取到的数据。采用生产者、消费者模式去消费数据。

因为在读取的时候是比较快的,单线程的数据处理能力比较差。因此思路一的性能阻塞在取数据的一方且又是同步操作,导致整个链路的性能会变的很差。


所谓分治法就是分而治之,也就是说将海量数据分割处理。根据 CPU 的能力初始化 n 个线程,每一个线程去消费一个队列,这样线程在消费的时候不会出现抢占队列的问题。同时为了保证线程安全和生产者消费者模式的完整,采用阻塞队列。Java 中提供了 LinkedBlockingQueue 就是一个阻塞队列。

be19e306-71e2-11ed-8abf-dac502259ad0.png

初始化阻塞队列

使用 LinkedList 创建一个阻塞队列列表:

privatestaticListString>>blockQueueLists=newLinkedList<>();

在 static 块里初始化阻塞队列的数量和单个阻塞队列的容量为 256。

上面讲到了 30 亿数据大概 2500 行,按行塞到队列里。20 个队列,那么每个队列 125 个,因此可以容量可以设计为 256 即可。

//每个队列容量为256
for (int i = 0; i < threadNums; i++) {
    blockQueueLists.add(new LinkedBlockingQueue<>(256));
}

生产者

为了实现负载的功能,首先定义一个 count 计数器,用来记录行数:

privatestaticAtomicLongcount=newAtomicLong(0);

按照行数来计算队列的下标 long index=count.get()%threadNums

下面算法就实现了对队列列表中的队列进行轮询的投放:

static classSplitData{
publicstaticvoidsplitLine(StringlineData){
        String[] arr = lineData.split("
");
        for (String str : arr) {
            if (StringUtils.isEmpty(str)) {
                continue;
            }
            long index = count.get() % threadNums;
            try {
                // 如果满了就阻塞
                blockQueueLists.get((int) index).put(str);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
count.getAndIncrement();
        }
    }

消费者


1) 队列线程私有化

消费方在启动线程的时候根据 index 去获取到指定的队列,这样就实现了队列的线程私有化。

private static void startConsumer() throws FileNotFoundException, UnsupportedEncodingException {
    //如果共用一个队列,那么线程不宜过多,容易出现抢占现象
    System.out.println("开始消费...");
    for (int i = 0; i < threadNums; i++) {
        final int index = i;
        // 每一个线程负责一个 queue,这样不会出现线程抢占队列的情况。
        new Thread(() -> {
            while (consumerRunning) {
                startConsumer = true;
                try {
                    String str = blockQueueLists.get(index).take();
                    countNum(str);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();
}
}

2) 多子线程分割字符串

由于从队列中多到的字符串非常的庞大,如果又是用单线程调用 split(",") 去分割,那么性能同样会阻塞在这个地方。

// 按照 arr的大小,运用多线程分割字符串
private static void countNum(String str) {
    int[] arr = new int[2];
arr[1]=str.length()/3;
    for (int i = 0; i < 3; i++) {
finalStringinnerStr=SplitData.splitStr(str,arr);
        new Thread(() -> {
            String[] strArray = innerStr.split(",");
            for (String s : strArray) {
                countMap.computeIfAbsent(s, s1 -> new AtomicInteger(0)).getAndIncrement();
            }
        }).start();
    }
}

3) 分割字符串算法

分割时从 0 开始,按照等分的原则,将字符串 n 等份,每一个线程分到一份。

用一个 arr 数组的 arr[0] 记录每次的分割开始位置。arr[1] 记录每次分割的结束位置,如果遇到的开始的字符不为 "," 那么就 startIndex-1。如果结束的位置不为 "," 那么将 endIndex 向后移一位。

如果 endIndex 超过了字符串的最大长度,那么就把最后一个字符赋值给 arr[1]。

/**
 * 按照 x坐标 来分割 字符串,如果切到的字符不为“,”, 那么把坐标向前或者向后移动一位。
 *
 * @param line
 * @param arr  存放x1,x2坐标
 * @return
 */
public static String splitStr(String line, int[] arr) {
    int startIndex = arr[0];
    int endIndex = arr[1];
    char start = line.charAt(startIndex);
    char end = line.charAt(endIndex);
    if ((startIndex == 0 || start == ',') && end == ',') {
        arr[0] = endIndex + 1;
        arr[1] = arr[0] + line.length() / 3;
        if (arr[1] >= line.length()) {
            arr[1] = line.length() - 1;
        }
        return line.substring(startIndex, endIndex);
    }


    if (startIndex != 0 && start != ',') {
        startIndex = startIndex - 1;
    }


    if (end != ',') {
        endIndex = endIndex + 1;
    }


    arr[0] = startIndex;
    arr[1] = endIndex;
    if (arr[1] >= line.length()) {
        arr[1] = line.length() - 1;
    }
    return splitStr(line, arr);
}

测试结果

内存和 CPU 初始占用大小:

be25f75e-71e2-11ed-8abf-dac502259ad0.png

启动后,运行时内存稳定在 11.7G,CPU 稳定利用在 90% 以上。

be3b5298-71e2-11ed-8abf-dac502259ad0.png

总耗时由 180 秒缩减到 103 秒,效率提升 75%,得到的结果也与单线程处理的一致。

be59f48c-71e2-11ed-8abf-dac502259ad0.png

6. 遇到的问题

如果在运行了的时候,发现 GC 突然罢工不工作了,有可能是 JVM 的堆中存在的垃圾太多,没回收导致内存的突增。

be7930d6-71e2-11ed-8abf-dac502259ad0.png

解决方法

在读取一定数量后,可以让主线程暂停几秒,手动调用 GC。

提示: 本 demo 的线程创建都是手动创建的,实际开发中使用的是线程池。

审核编辑 :李倩


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    7315

    浏览量

    93983
  • JAVA
    +关注

    关注

    20

    文章

    2997

    浏览量

    115683
  • 代码
    +关注

    关注

    30

    文章

    4941

    浏览量

    73151

原文标题:如何用 Java 几分钟处理完 30 亿个数据?

文章出处:【微信号:TheBigData1024,微信公众号:人工智能与大数据技术】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    esp32s3多连接从机BLE设备出现超时断开连接的现象

    基于V5.5.1版本的gattc_gatts_cox例程修改;同时也修改了menuconfig里的配置;在都连接上四从机后;在数据传输过程一段时间(几分钟或者更久)会出现超时断开连接的现象;有什么解决办法;其中从机在
    发表于 12-02 09:18

    无线充电25w:30分钟满血复活

    25W无线充电提升充电速度,实现30分钟补电,提升用户体验,推动无线充电技术发展。
    的头像 发表于 10-21 08:31 567次阅读
    无线充电25w:<b class='flag-5'>30</b><b class='flag-5'>分钟</b>满血复活

    使用cyhal_timer_start() 时,重新启动几分钟后,它就会卡住并且我的设备会冻结,为什么?

    我在使用 cyhal_timer_start() 时遇到了问题。 我需要定期启动和停止时钟,它可以工作一段时间,但重新启动几分钟后,它就会卡住并且我的设备会冻结。
    发表于 06-30 07:01

    ADI Trinamic TMC5240评估套件数据手册

    。它的启动快速、简单,只需几分钟,就能让用户的电机运转,同时提供对所有寄存器、功能和诊断的完全访问。对于诊断,MCU和TMC5240之间的所有信号均可通过桥接电路板上的探头访问。TMC5240-EVAL可搭配Landungsbruecke MCU板使用,或者单独使用。
    的头像 发表于 06-17 14:12 941次阅读
    ADI Trinamic TMC5240评估套件<b class='flag-5'>数据</b>手册

    在IDE中运行固件内自带的AI程序,约2分钟左右就死机了,为什么?

    1、在IDE中运行固件内自带的AI程序,约2分钟左右就死机,点击停止报 繁忙,点连接也报 忙碌中。从资源管理器中点击CanMV可以访问下一级文件夹。 2、过几分钟后在IDE中点击“连接”,报“获取
    发表于 06-06 07:28

    HAL库1.8.4在做破坏性测试的时候出现g_state永远为busy的情况导致串口通信发送卡死,为什么?

    2块板子是靠串口通信的,MCU为103RCT6,我们一项目在做破坏性测试的时候,TXD,RXD短接起来,并且用一USB转TTL以10ms速率一次发大几百,上千个数据,过几分钟最多十
    发表于 04-23 06:35

    几分钟带你搞懂什么是压力传感器

    一、引言 在现代工业、科研及日常生活中,压力传感器作为一种重要的测量工具,发挥着不可替代的作用。它能够将物体受到的压力或压力变化转化为电信号,便于我们进行监测、控制或数据采集。本文将详细介绍
    的头像 发表于 02-23 11:55 2345次阅读

    用ADS1232接称重传感器时,上电复位后,读取ADS1232的输出AD值为2053,该值会一直慢慢的持续递减,为什么?

    请教:我在用ADS1232接称重传感器时,称重传感器空载,在上电复位后,读取ADS1232的输出AD值为2053,该值会一直慢慢的持续递减,过5分钟,会变成2083,再过几分钟会变成2122
    发表于 02-11 07:08

    用ADS1255做了个数据采集板,发现在采集信号时刚开始的2分钟会有漂移,什么原因导致的?

    用ADS1255做了个数据采集板,发现在采集信号时刚开始的2分钟会有漂移,经过逐步检查有以下结论: 1. 如果把 ADS1255的差分输入端短接,输出数据没有漂移; 2. ADS1255差分输入
    发表于 02-07 06:37

    AFE4400做高温试验时,工作几分钟就停止工作读不出数据了,是什么原因导致的?

    用AFE4400作血氧监测,在室温下能正常测试,在做高温试验时,温度到35℃ ,工作几分钟, AFE4400 停止工作,读不出数据,外接无源晶振不起振, AFE两组电压正常
    发表于 01-09 08:29

    如何把两个数据返回给调用函数

    函数的处理结果包含两个数据,如何把两个数据返回给调用函数? 第一种,把两个数据封装成一结构体,函数返回结构体。 调用函数的地方同样用结构体
    的头像 发表于 01-08 10:15 679次阅读

    请问DAC7568掉电情况下寄存器里的值能保持多久?

    DAC7568掉电情况下寄存器里的值能保持多久,越精确越好,比如说几秒或者几分钟,谢谢
    发表于 01-07 08:29

    docker通过中间镜像加速部署

    使用 docker 打包镜像的时候, 每次耗费时间最多的就是 docker build 的过程. 特别是对于前端工程的打包, 有时候下载依赖包的时间就要 10 几分钟, 这就导致发布版本的效率极低.
    的头像 发表于 01-06 12:39 847次阅读

    使用DS16EV5110时遇到的两疑问求解

    一段时间后会出现声音卡顿的现象,有时候工作十几分钟后出现,有时上电就出现,视频正常。 帮忙看看这个是什么问题,谢谢
    发表于 12-23 06:32

    分享一些深控技术“不需要点表的边缘计算网关”在MES工厂的实际应用案例

    产品质量追溯时间从原来的数小时大幅缩短至几分钟。一旦产品出现质量问题,通过 MES 系统可以迅速定位到是哪台设备、哪个环节出现问题,产品次品率降低了 30%。由于质量问题导致的客户投诉减少了 50%,生产效率也因为数据的实时性和
    的头像 发表于 12-13 14:29 662次阅读
    分享一些深控技术“不需要点表的边缘计算网关”在MES工厂的实际应用案例