0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

智能网联汽车网络安全攻击与防御技术概述

上海控安 来源:上海控安 作者:上海控安 2022-11-18 11:37 次阅读

作者 | 王博文上海控安可信软件创新研究院研究员

来源 |鉴源实验室

01 引言

在汽车电动化、网联化、智能化和共享化等新四化的发展趋势下,智能网联汽车(Intelligent Connected Vehicles,ICVs)已经是新时代的必然产物。在智能网联汽车的场景下,衍生出了如智能无线传感器技术、车联网技术、无人驾驶汽车技术和智能交通系统等一系列创新技术。然而,消费者在体验智能技术的同时,却承担着极大的安全风险。智能网联汽车消除了黑客攻击车辆的地域和距离限制,给黑客远程批量攻击目标车辆提供了可能,使得车辆面临的信息安全风险显著增加。

该系列文章主要对智能网联汽车的网络安全攻击及其防御技术进行全面的概述。一方面总结以往研究的发现和结论,并从学术研究和产业发展的角度,指出当前研究所面临的挑战和发展趋势。我们希望我们的工作可以让汽车设计和开发相关的研究人员和工程师了解ICVs的安全问题以及最先进的防御和缓解技术。另一方面,我们也希望可以激励其他研究人员解决ICVs发展面临的网络安全挑战。

02 智能网联汽车面临的威胁

智能网联汽车上部署了多种智能传感器组件,如激光雷达、毫米波雷达、超声波雷达、摄像头、全球导航卫星系统传感器(Global Navigation Satellite System,GNSS)等[1],组件之间又是通过各种有线或者无线的通信方式进行连接,如车载以太网CAN总线、蜂窝网络(4G/5G)、蓝牙(Bluetooth)、Wi-Fi和WAVE(Wireless Access in the Vehicular Environment)等。传感器组件使得ICVs能够感知周围环境的障碍物,利用传感器的数据,SLAM(Simultaneous localization and mapping)可以定位周围环境以及车辆的位置,进一步辅助自动驾驶做出决策。虽然传感器组件和连接机制在安全性、成本和燃油效率方面有了显著改善,但它们也为网络攻击创造了更多机会。

2.1 攻击案例

根据Upstream 2022年全球汽车网络安全报告[2],如图1所示,2010年至2021年间,攻击者对智能网联汽车最常见的攻击载体有11种,且大多为黑帽攻击,仅2021年,黑帽攻击所占比例高达56.9%。白帽黑客操纵汽车系统为了发现漏洞或进行教育研究,改善车辆的网络安全,而黑帽黑客往往与犯罪活动一致。

早在2004年,德国的安全研究员Marko Wolf就发现了车载网络存在被恶意攻击的隐患[3],并在随后的几年进行了深入的调研[4-6]。不过相关安全问题都是通过直接以物理形式接触相应的网络结构为前提。

2010年,美国南卡罗来纳大学的研究员发现了汽车的胎压监测系统存在安全和隐私相关的隐患,车上相关的无线通信协议存在被入侵的风险[7]。

2013年Charlie Miller和Chris Valasek在通过车载诊断接口实现了对丰田和福特汽车的攻击和控制[8]。通过诊断接口可以直接操纵汽车的发动机、制动器、灯光、车门等,并且通过诊断功能的ECU刷写功能,可以篡改ECU内部的程序信息。2015年他们两人又使用Wi-Fi开放端口侵入Jeep Cherokee的车载网络系统[9],更新了车内ECU的固件,并且成功地控制了一系列汽车功能(禁用刹车和停止发动机),该攻击案例引发了140万辆汽车的召回,而该事件是首个信息安全所引发的汽车召回事件。

科恩实验室在2018年针对宝马多款车型的电子控制单元进行安全分析,发现了多个通用安全漏洞[10]。这些漏洞影响组件涉及车载信息娱乐系统、车载通讯模块和车载网关。攻击者可以利用这些漏洞,通过物理接触攻击或远程攻击,获得车内CAN总线控制权,从而实现汽车的控制。

2021年6月,卡内基梅隆大学CyLab研究人员发现了一类新的网络安全漏洞[11],利用汽车MCU时钟外设的门控特性,开发了用于远程关闭的CANnon攻击,并且成功在不到2ms的时间内对一辆福特福克斯和一辆丰田普锐斯实现了关机。

pYYBAGN2_WSAQbTEAASjT3ky5AQ838.png

图12010年-2021年最常见的ICVs攻击类型[2]

2.2 攻击的分类

2.2.1 攻击目标

正如前面所说,ICVs部署了多种智能传感器组件,组件之间又通过各种通信方式进行连接。它们一起工作,促进ICVs的运转。破坏或篡改任何这些组件都可能破坏ICVs的稳定,攻击者可以把智能传感器组件以及通信方式作为攻击目标,进而实现窃取车辆或者个人信息,造成财产损失和人身伤害。下面描述现有的研究中已被网络攻击者锁定的ICVs组件,有些攻击模型已经被证明是真实的威胁,而有些只是在理论上进行了讨论。

(1)车载诊断接口(On-board Diagnostic Port,OBD):OBD端口可以用来收集有关汽车排放、里程、速度和汽车零部件数据的信息。OBD标准有OBD-I和OBD-II两种。OBD-I于1987年推出,但存在许多缺陷,因此被1996年推出的OBD-II所取代。OBD端口可以提供车内CAN网络和以太网的实时数据,许多OEM制造商也使用OBD端口来执行OTA固件更新。

(2)汽车电子控制单元(Electronic Control Unit,ECU):汽车ECU是嵌入式电子系统,用于控制车辆中的其他子系统。所有现代车辆都使用ECU来控制车辆的功能,一些重要的ECU可以是刹车控制模块,发动机控制模块,轮胎压力监测系统等。制动控制模块从轮速传感器和制动系统收集数据,并处理数据以确定是否实时释放制动压力。发动机控制模块控制燃料、空气和火花,并从其他传感器收集数据,以确保所有组件都在正常的工作范围内。轮胎压力监测系统从轮胎内的传感器收集数据,并确定轮胎压力是否处于理想水平。

(3)控制区域网络(Controller Area Network,CAN):ECU通常通过CAN总线进行连接。CAN为总线型网络,具有广播特性,在ICVs中,网络数据包可以被传输到CAN网络中的所有节点,并且数据包不包含认证字段。因此,一个被入侵的节点可以收集所有通过网络传输的数据,并将恶意数据广播给其他节点,使整个CAN系统容易受到网络攻击。

(4)激光雷达(Light Detection and Ranging,LiDAR):激光雷达传感器发送光波探测周围环境,并根据反射信号进行测量其到周围物体的距离。在ICVs中,激光雷达通常用于障碍物检测,以安全通过环境,通常由反旋转激光束实现。激光雷达的数据可被EUC的软件用于确定环境中是否有障碍物,也可用于自动紧急制动系统。

(5)毫米波雷达(Radio Detection and Ranging,Radar):毫米波雷达属于在无线电毫米波领域发出电磁波的传感器,通过感应反射信号来探测物体并测量其距离和速度。在ICVs中,毫米波雷达在许多应用中都很有用。例如,近程雷达可以实现盲点监测、车道保持辅助系统和停车辅助系统等。

(6)全球定位系统(Global Positioning System,GPS):GPS是一种基于卫星的导航系统,当GPS接收器发现来自三个或更多卫星的信号时,就可以计算出接收器的位置。由于找到两个地点之间的路线是自动驾驶的必要条件,GPS信号对自动驾驶汽车至关重要。但是由于GPS信号不包含任何可以直接验证信号来源的数据,GPS接收器很容易受到干扰和欺骗攻击。

(7)摄像头(Cameras/Image Sensors):自动驾驶和半自动驾驶汽车依赖于放置在许多位置的摄像头来获得360度的视野。相机为重要的自动驾驶任务提供信息,比如交通标志识别和车道检测等。摄像机也可以用来取代激光雷达,以更低的成本完成物体探测和测量距离的任务,但它们在下雨、雾或雪等特定情况下的性能较差[12]。因此摄像头与激光雷达和毫米波雷达相配合,可以为自动驾驶提供更丰富多样的数据。

(8)V2X通信(Vehicle to Everything,V2X):V2X通信可分为车对车网络(Vehicle to Vehicle,V2V)和车对基础设施网络(Vehicle to Infrastructure)。V2V通信有助于在附近的车辆之间交换数据,并可以快速地为ICVs已经收集到的关于周围环境的数据提供额外的信息。V2I通信有助于ICVs和道路基础设施之间的数据交换,这些基础设施提供了关于交通系统的数据。

2.2.2攻击模型分类

根据访问需求可以将攻击模型分为远程执行(远程访问攻击)或物理访问ICVs组件执行(物理访问攻击)。

(1)远程访问攻击:攻击者不需要对ICVs上的部件进行物理修改,也不需要在ICVs上附加设备。这种类型的攻击比物理访问攻击更常见,而且由于ICVs之间会传输大量信息,这种攻击的数量正在增加。ICVs上任何与周围环境通信和交互的组件都容易被远程利用。远程访问攻击的三种常见模式是发送伪造数据、阻塞信号和收集机密数据。发送伪造数据的目的是欺骗ICVs系统,以获得对系统行为的显著控制,比如LiDAR欺骗、Radar欺骗、GPS欺骗和对抗性图像攻击等。阻塞信号旨在阻止ICVs接收确保其正常工作的信息,比如激光雷达干扰、毫米波雷达干扰、GPS干扰、摄像机致盲和拒绝服务攻击等。收集机密数据则为进一步的攻击服务。

(2)物理访问攻击:攻击者需要物理修改ICVs上的组件或将仪器附加到ICVs上,比如故障数据注入。物理访问攻击更难实施,因为攻击者在篡改ICVs时可能被检测到。但是CAN和ECU既可以作为远程访问的目标,也可以作为物理访问的目标。

从攻击者的动机角度又可以将攻击模型分为三种,中断ICVs的操作,控制ICVs和窃取信息。

(1)中断操作:攻击者的目标是破坏对自动驾驶很重要的ICVs组件,从而使自动驾驶功能在ICVs上失效。这些攻击类似于网络上的拒绝服务攻击。

(2)获取ICVs控制权限:攻击者获得对ICVs的充分控制,以便他们可以改变车辆的移动,如改变车辆的路线,强制紧急刹车,和改变车辆速度。

(3)窃取信息:攻击者的目标是从ICVs收集重要的或机密的信息,收集的信息可能用于进一步的攻击。

如表1所示,将ICVs的攻击模型进行分类,按照攻击目标和攻击行为方式分为15种。

表1ICVs攻击模型的分类

pYYBAGN2_X-ABknIAADZkTjZNAA899.png

pYYBAGN2_ZSAIPIrAAB3yH1lspU396.png

后面几期将对智能网联汽车的攻击场景以及对应的应对措施做详细的分析与介绍。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 网络安全
    +关注

    关注

    9

    文章

    2945

    浏览量

    58678
  • 智能网联汽车

    关注

    9

    文章

    887

    浏览量

    30858
收藏 人收藏

    评论

    相关推荐

    黑芝麻智能获得ISO/SAE 21434:2021汽车网络安全流程认证证书

    4月3日,黑芝麻智能获得 ISO/SAE 21434:2021汽车网络安全流程认证证书,标志着黑芝麻智能已建立起符合ISO/SAE 21434要求的网络安全产品开发流程体系,构筑起
    的头像 发表于 04-03 17:22 295次阅读
    黑芝麻<b class='flag-5'>智能</b>获得ISO/SAE 21434:2021<b class='flag-5'>汽车网络安全</b>流程认证证书

    知语云全景监测技术:现代安全防护的全面解决方案

    防护的全面解决方案,凭借其强大的实时监测、智能分析、主动防御等功能,以及易于部署、易于管理的优势,正在为越来越多的用户所认可和应用。在未来,随着技术的不断进步和应用场景的不断拓展,知语云全景监测
    发表于 02-23 16:40

    汽车网络安全-挑战和实践指南

    汽车网络安全-挑战和实践指南
    的头像 发表于 02-19 16:37 195次阅读
    <b class='flag-5'>汽车网络安全</b>-挑战和实践指南

    FCA汽车网络安全风险管理

    汽车工业继续在车辆上增加连接,以满足顾客对技术的贪得无厌的需求,但汽车不仅仅是某些计算机网络上的不安全端点--一些人所描绘的--
    发表于 12-29 10:48 166次阅读
    FCA<b class='flag-5'>汽车网络安全</b>风险管理

    汽车网络安全:防止汽车软件中的漏洞

    汽车网络安全汽车开发中至关重要,尤其是在 汽车软件 日益互联的情况下。在这篇博客中,我们将分享如何防止汽车网络安全漏洞。 静态分析工具有助于执行关键的
    的头像 发表于 12-21 16:12 775次阅读
    <b class='flag-5'>汽车网络安全</b>:防止<b class='flag-5'>汽车</b>软件中的漏洞

    智能网联汽车信息安全产业难题及应对策略

    随着汽车网联化、智能化的快速发展,新的网络安全与数据安全的问题不断“衍生”而来,汽车安全防护的边
    的头像 发表于 12-13 14:22 567次阅读

    智能网联汽车信息安全产业难题及解决方案

    随着汽车网联化、智能化的快速发展,新的网络安全与数据安全的问题不断“衍生”而来,汽车安全防护的边
    发表于 12-11 11:07 274次阅读

    新唐对应四大物联网安全攻击的保护措施

    物联网安全包含装置安全网络安全,在此定义下涵盖了保护联网设备和网络所需的流程、技术和防护措施。在现今社会上,各类型联网装置愈来愈普及,从工
    发表于 08-21 08:14

    汽车网关Gateway知识介绍

    随着汽车网联化功能和智能化功能越来越多,智能网联汽车网络
    的头像 发表于 08-18 15:51 1887次阅读
    <b class='flag-5'>汽车网</b>关Gateway知识介绍

    汽车网络安全攻击实例解析(二)

    本文则选取典型的智能网联汽车网络安全攻击实例展开详细介绍。
    的头像 发表于 08-08 15:17 960次阅读
    <b class='flag-5'>汽车网络安全攻击</b>实例解析(二)

    加特兰微电子通过ISO/SAE 21434汽车网络安全认证

    该认证的芯片公司。此次认证是加特兰继通过ISO 26262功能安全管理体系认证、ISO 26262 ASIL-B产品认证之后,又一次通过国际标准的检验,标志着加特兰具备了网络安全开发和管理方面的能力。     汽车网络安全 随着
    的头像 发表于 06-29 11:05 878次阅读

    浅析汽车网络安全技术要求

    作为汽车行业时下最热门的话题之一,网络安全成功地将智能网联技术的发展从L2~L4级的特色化定义和差异化比拼上拉回到了
    发表于 06-13 16:18 333次阅读
    浅析<b class='flag-5'>汽车网络安全</b><b class='flag-5'>技术</b>要求

    斑马智行荣获由DEKRA德凯颁发的ISO/SAE 21434汽车网络安全认证证书

    5月,上海,斑马智行荣获由DEKRA德凯颁发的ISO/SAE 21434汽车网络安全认证证书。斑马智行首席信息安全专家李斓先生,DEKRA德凯亚太区高级副总裁、中国大陆及香港董事总经理Kilian Aviles博士,DEKRA德凯中国
    的头像 发表于 05-26 09:12 661次阅读

    禾赛获激光雷达领域首个汽车网络安全管理标准ISO/SAE 21434认证

    ISO 与 SAE 联合制定的汽车网络安全管理标准 ISO/SAE 21434 覆盖了概念、开发、生产、运营、报废等全产品生命周期的各个阶段,帮助汽车主机厂和相关供应商对道路车辆网络安全风险进行全面管理,以满足全球
    的头像 发表于 05-24 15:15 685次阅读
    禾赛获激光雷达领域首个<b class='flag-5'>汽车网络安全</b>管理标准ISO/SAE 21434认证

    DEKRA德凯帮助汽车制造商满足全球汽车网络安全管理法规要求

    智能网联汽车行业包括弗迪电池带来了重大的发展机遇。为了确保组织的安全管理,产品的设计生产运维等符合相应的标准,在与DEKRA德凯深入合作后,弗迪电池成功获得了ISO/SAE 2143
    的头像 发表于 05-19 15:43 525次阅读