0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用于宽泛温度范围内液滴操控的极端润湿性表面

微流控 来源:微流控 作者:微流控 2022-11-04 09:36 次阅读

液滴操控在生物化学、细胞培养和能源采集与利用等领域有着广泛的应用。尽管单独或协同作用的磁场、光场、电场或热能量梯度可以实现液滴的操控,然而这些依赖外部能量输入的方法,在液滴运动行为、液滴损耗和操控环境等方面的可控性相对较差,且它们需要高度复杂的驱动技术和装置。基于润湿性差异的图案化表面可实现常温下液滴的弹跳、运输等操控,但在宽泛温度范围内的液滴可控操控仍然是一个巨大的挑战。在宽泛温度范围内的液滴可控蒸发、弹跳及运输在微电子散热、药物筛选及分离、喷墨打印和高温微流控系统等领域具有重要的应用前景。

近期,湖南大学机械运载与工程学院、国家高效磨削工程技术研究中心的舒成松博士(第一作者)、苏其通、李明浩、汪振斌、尹韶辉教授和黄帅副教授(通讯作者)在SCI期刊《极端制造》(International Journal of Extreme Manufacturing,IJEM)上共同发表题为《用于宽泛温度范围内液滴操控的极端润湿性表面》(Fabrication of extreme wettability surface for controllable droplet manipulation over a wide temperature range)的研究文章,报道了一种通过电化学掩模蚀刻和微细铣削复合工艺,在铝表面高效稳定制造极端润湿性表面的方法(图1)。通过实验和模拟研究了不同温度下极端湿润表面的热耦合特性、蒸发机理和液滴运输机制。研究表明,液滴在超疏水和亲水表面呈现不同的蒸发模式,通过控制亲水图案的几何形状可以实现液滴在不同图案上的可控蒸发。控制基底润湿性差异、液滴与亲水表面的接触面积和基底温度可实现液滴的可控弹跳。在Laplace压力差和温度梯度驱动下,可实现液滴的分离、汇合和抗重力运输。

b130660a-5be0-11ed-a3b6-dac502259ad0.jpg

图1 极端润湿性表面的制备过程。Step I:经掩膜电化学刻蚀和FAS改性后制备的超疏水表面S1和超疏水-亲水的润湿性差异表面S2;Step II:在超疏水铝表面通过定域微铣制备超疏水-亲水润湿性差异图案化表面;Step III:通过二次掩膜电化学刻蚀在超疏水铝表面制备超疏水-超亲水极端润湿性表面。

液滴可控蒸发

数值模拟表明液滴在超疏水表面上的蒸发过程呈恒接触角(CCA)蒸发模式,主要是因为液滴蒸发时,在热量从基底底部向上部传输的过程中,液滴表面不同位置存在的温度差异引起表面张力梯度,造成的马兰戈尼流动和内部自然对流综合效应导致液滴内部形成两个环流单元。而液滴在亲水表面上呈现出恒接触半径(CCR)接触模式(图2)。

b15f652c-5be0-11ed-a3b6-dac502259ad0.png

图2 (a-b)分别为3s时超疏水铝表面上液滴的温度、流线和速度的耦合场;(c-d)3s时,亲水铝表面的温度、流线和液滴速度的耦合场;(e)100℃时液滴在超疏水表面呈恒接触角蒸发模式;(f)100℃时液滴在亲水表面呈恒接触半径蒸发模式。

随着亲水微坑直径的增大,同体积的液滴在微坑上的蒸发时间变短,实现了亲水圆槽图案和亲水微坑点阵图案上液滴的可控蒸发(图3)。

b18a6326-5be0-11ed-a3b6-dac502259ad0.png

图3 (a)不同直径的亲水微坑的蒸发时间;(b)亲水圆槽图案可控蒸发;(c)亲水微坑点状图案上的液滴控制蒸发。

液滴定向弹跳

常温下通过控制基底润湿性差异程度以及液滴与亲水区域的接触面积可实现液滴不同距离的定向弹跳。当液滴接触到超疏水和亲水边界线(红色虚线)后,朝着更加湿润的亲水区域弹跳(图4a)。液滴在超疏水-超亲水的极端润湿性表面上经60ms后完全从超疏水区域弹跳至超亲水区域(图5a),而在具有超疏水-亲水的中度润湿性差异基底上经51ms后液滴完全从超疏水区域弹跳至亲水区域(图5b)。液滴在超疏水-超亲水表面上的定向弹跳距离大于液滴在超疏水-亲水的表面上的定向弹跳距离(图5c)。主要是由于较高的润湿性对比下作用在回弹液滴上的合力越大,导致其着落距离增大。液滴与亲水接触面积比例的增大使液滴粘附力也随之增大,黏性耗散能增加,且亲水区域明显的钉扎效应会耗散液滴的动能,使定向弹跳距离及着陆距离也随之缩短(图6a-6d)。

b27c0e9c-5be0-11ed-a3b6-dac502259ad0.png

图4 (a)水滴轻微接触到亲水区域后朝向更润湿表面的方向定向弹跳;(b)撞击液滴在超疏水性和亲水性区域上的接触线轨迹随时间的变化。

b29b9b72-5be0-11ed-a3b6-dac502259ad0.png

图5 (a)液滴在超疏水-超亲水的极端润湿性表面上的定向弹跳过程;(b)液滴在超疏水-亲水基底上的定向弹跳过程;(c)超疏水-超亲水、超疏水-亲水基底上定向弹跳的液滴接触线轨迹随时间变化图。

b2bf70ba-5be0-11ed-a3b6-dac502259ad0.png

图6 (a-c)分别为50%、22%、12%亲水区域接触面积的液滴定向弹跳情况;(d)亲水区域接触面积比例不同时液滴接触线轨迹随时间变化图。

高温条件下极端润湿性交界处液滴定向弹跳

在加热润湿模式下可以实现液滴的定向弹跳。当温度Ts低于Leidenfrost沸点时,液滴朝向亲水区域弹跳(图7a)。当温度Ts高于Leidenfrost沸点时,由蒸汽层产生的推力使液滴在交界处垂直反弹或向超疏水区域移动(图7b-7c)。

b2e17ce6-5be0-11ed-a3b6-dac502259ad0.png

图7 温度为(a)150℃;(b)200℃和(c)250℃时不同润湿性的表面交界处的液滴的定向弹跳。

液滴在极端润湿性表面的定向运输

在Laplace压力差驱动的润湿性图案化表面,实现了液滴从小圆槽到大圆槽的定向运输(图8a-8c),流速呈先增大后减少的趋势(图8d)。基于这一规律实现了液滴在润湿性图案化微流道表面的汇合和分流运输运用(图8e-8f)。

b2fd7dba-5be0-11ed-a3b6-dac502259ad0.jpg

图8 (a)开放表面微流体系统;(b)去离子水由小圆槽储层到大圆槽储层的运输过程;(c)去离子水由大圆槽储层到小圆槽储层的运输过程;(d)大圆槽储存的液滴体积及液滴流速随时间变化量;(e)图案化微流道中液滴汇合实验;(f)图案化微流道中液滴分流实验。

温度梯度驱动下的液滴定向和抗重力运输

温度梯度促使液滴从高温区迁移到低温区,在5.9℃/mm的温度梯度下实现了去离子水、无水乙醇和和煤油等不同黏度的液体的定向运输(图9b),且运输速率随温度梯度的下降而减小(图9c)。在温度梯度的作用下,液滴在不同温度区域的接触角不同,低温部分的表面张力较大。基于此原理实现了最大传输倾斜度为3°的去离子水、无水乙醇和和煤油从高温侧到冷凝侧的短距离抗重力传输(图9d)。

b32f9674-5be0-11ed-a3b6-dac502259ad0.png

图9 (a) 由温度梯度驱动的液滴运输实验装置;(b)温度梯度驱动的不同液滴的定向运输;(c)不同液滴的迁移速度随温度梯度的变化;(d)由温度梯度驱动的不同液滴抗重力运输。

综上所述,研究人员通过控制润湿性差异实现了宽泛温度范围内的极端润湿性表面的液滴可控蒸发、定向弹跳和定向运输。开发新型润湿性差异运输平台,突破运输距离限制,减少与运输平台的接触面积,实现不同液滴多场景下的无需能量输入的低损耗和长距离无泵运输。基于润湿性差异的运输平台将会在生物化学、微流控系统、细胞培养和能源采集与利用等领域开辟更多新的应用。

论文链接: https://iopscience.iop.org/article/10.1088/2631-7990/ac94bb

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 梯度
    +关注

    关注

    0

    文章

    30

    浏览量

    10259
  • 蒸发
    +关注

    关注

    0

    文章

    6

    浏览量

    6572

原文标题:用于宽泛温度范围内液滴操控的极端润湿性表面

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    基于轨道电润湿的液滴操控技术,有望用于新一代数字微流控平台

    润湿(electrowetting)现象于1875年由法国物理学家Lippmann提出,作为现有最成熟的液滴电操控方法,已成功应用于数字微流控、传热强化、淡水收集等领域。
    的头像 发表于 04-19 18:24 830次阅读
    基于轨道电<b class='flag-5'>润湿</b>的液滴<b class='flag-5'>操控</b>技术,有望<b class='flag-5'>用于</b>新一代数字微流控平台

    详解电子元件的润湿平衡实验

    为了避免大规模生产时出现元器件焊盘/引脚锡量太少问题,业界往往会提前对元件进行焊锡润湿平衡实验以验证元器件可焊性。润湿平衡测试的目的时检测PCBA的可焊性是否能够满足使用要求,并由此判断润湿性不良的原因。
    的头像 发表于 03-27 09:13 119次阅读
    详解电子元件的<b class='flag-5'>润湿</b>平衡实验

    温度控制器电路图分享

    温度控制器是一种用于监测和控制设备或环境温度的设备。它可以检测当前环境的温度,并根据预设的温度范围
    的头像 发表于 02-22 16:27 843次阅读
    <b class='flag-5'>温度</b>控制器电路图分享

    浅谈IGBT模块使用温度范围

    模块工作的电源系统工作在宽温度范围内,也要保证电源系统中的所有功率器件在宽温度范围内可靠地工作。为达到这一目的和最大限度地减少成本,应仔细估算在两个
    的头像 发表于 01-19 16:25 1582次阅读
    浅谈IGBT模块使用<b class='flag-5'>温度</b><b class='flag-5'>范围</b>

    浅谈锡膏的润湿

    锡膏普遍用于半导体封装行业中,能够起到连接芯片和焊盘的作用。通过印刷,点胶等工艺,锡膏作为一种焊料能够成为焊盘和芯片的连接媒介。在回流焊接后锡膏熔化并随后固化成为大小均匀的焊点并实现电气互连。那么在锡膏焊接的机理究竟有哪些?要了解锡膏焊接,可以先了解润湿性。
    的头像 发表于 01-15 09:27 285次阅读
    浅谈锡膏的<b class='flag-5'>润湿</b>性

    POWER IC-LTC3111输出电压会在一定范围内跟着输入电压的减小而减小,增大而增大是为什么?

    按照上图设计电路,输出电压vout为5.8v,FB电压为0.9v,并且输出电压会在一定范围内跟着输入电压的减小而减小,增大而增大,百思不得其解,特来请教专家,谢谢。
    发表于 01-05 12:45

    焊接过程中的不润湿与反润湿现象

    润湿和反润湿现象是焊接过程中常见的缺陷,它们分别表现为焊料与基体金属之间的不完全接触和部分润湿后的退缩。
    的头像 发表于 12-15 09:06 574次阅读
    焊接过程中的不<b class='flag-5'>润湿</b>与反<b class='flag-5'>润湿</b>现象

    请问±10V差分信号如何调理到差分ADC可以接受的±2.5V的范围内

    ±10V差分信号如何调理到差分ADC可以接受的±2.5V的范围内?另外采用差分放大器驱动差分ADC时,发现在绝对最大额定值参数中,有个差分输入电压电压,一般比较小,这个参数是不是说明只能输入的差分信号就这么大?
    发表于 11-27 06:06

    全工作频率范围内的运放共模抑制比如何测试?

    全工作频率范围内的运放共模抑制比如何测试?
    发表于 11-17 09:17

    AD5521可以设计满足1~2GHz宽范围内的阻抗匹配吗?

    您好! 我的设计是需要满足在1~2GHz的低噪声放大,当我选用了ADL5521后,在ADL5521datasheet发现典型电路做输入匹配时貌似并不能满足在1~2GHz宽范围内的匹配,而是
    发表于 11-17 07:51

    恶劣和极端环境中的PCB - 如何定义极端环境

    在恶劣和极端环境中工作的PCB,需要具备哪些特点?在设计和制造用于极端环境的PCB时,我们又需要考虑哪些重点呢?不同极端环境,会对其中的PCB产生什么影响?
    的头像 发表于 10-08 14:36 309次阅读

    STM32G030扩展温度范围什么意思?

    手册写的是-40~85℃ ,还写了一个扩展温度范围-40~105℃,,请问这个扩展温度范围什么意思,,是也能在105度使用的意思吗?
    发表于 08-08 06:27

    光电位传感器优点及应用

    传感器采用标准接口设计,方便安装和维护。 应用: 充电桩:光电位传感器主要用于检测充电桩电池位高度,以确保电池正常充电和使用。 蒸汽机:光电
    发表于 06-26 13:59

    分离式位传感器代替浮球传感器的优势

    ,避免了浮球传感器因受到液体波动等因素而导致的误差。 可靠强:分离式位传感器采用非接触式检测技术,不会受到液体的腐蚀和污染,具有较高的可靠。 适用范围广:分离式
    发表于 06-20 14:02

    HFAN-08.2.1:用于热电模块的PWM温度控制器

    对于大多数电子系统,精度受环境温度变化的影响。我们可以通过将关键组件的局部温度限制在较窄的范围内来提高精度。这种方法的适当应用包括高性能晶体、表面声波 (SAW) 滤波器、光子放大器和
    的头像 发表于 05-18 11:48 1165次阅读
    HFAN-08.2.1:<b class='flag-5'>用于</b>热电模块的PWM<b class='flag-5'>温度</b>控制器