0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

解决里程焦虑?主驱、OBC需求差异?失效风险?碳化硅上车背后的那些事

Hobby观察 来源:电子发烧友网 作者:梁浩斌 2022-10-24 01:25 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

电子发烧友网报道(文/梁浩斌)今年以来,碳化硅(SiC)上车的节奏明显加快了,搭载SiC电机驱动模块,或是SiC OBC的新车型陆续上市,比如蔚来ET5/7、SMART精灵、小鹏G9、比亚迪海豹等车型在电机驱动部分采用了SiC器件,而搭载SiC OBC的车型就更多了。
事实上,SiC这种材料在汽车领域开始大规模应用至今,仅仅是5年不到的时间。过去几年时间里,SiC器件市场发展迅速,在材料带来的耐高温、耐高压、高频等优越性能下,SiC的身影越来越多地出现在电动汽车上。

碳化硅如何提升电动汽车续航里程?
图源:蔚来汽车
而在车企的宣传中,我们能听到最多的是,采用SiC后汽车的电耗表现、续航里程、性能等指标都会有大幅提升。目前来看,在电动汽车中用得最多的依然是硅基IGBT,那么相比硅基IGBT,SiC器件是通过哪些途径去提升电动汽车的续航里程?
派恩杰半导体营销事业部销售总监马海川向电子发烧友网表示,SiC MOSFET器件与其相同额定参数的IGBT相比,总损耗可减少38%-60%。“尤其是SiC MOSFET在轻载时的损耗远远小于IGBT。由于电动汽车在城市中行驶时,绝大多数时间工作在轻载工况,SiC MOSFET所减少的损耗可以折算为5%-10%的电池续航里程”。
具体到SiC器件特性而言,安森美中国区汽车现场应用工程师夏超补充到,相比于硅基IGBT,SiC MOSFET在器件关断时无明显的拖尾电流,进而可以降低器件的开关损耗;同时电动汽车在匀速行驶状态下,电控所需输出的电流大小远低于额定电流值,而SiC MOSFET在中低电流下的导通损耗显著低于IGBT。
不过,这只是SiC MOSFET器件对电动汽车续航里程的直接影响。另一方面,由于SiC MOSFET可工作于更高的开关频率下减少了损耗,对散热要求较低,可有效减小驱动部件及水冷部件的重量及体积。
同时,800V及以上的高压平台,也开始在一些中高端车型上被应用。在高压平台上,若采用800V直流母线,传输相同功率所需的导线截面积也可以缩小,使得整车铜导线重量显著减少。因此,在采用SiC MOSFET后,综合驱动部件、散热部件以及线束的重量减轻,整车重量降低,也能够间接帮助提升续航里程。
续航里程和补能速度,是目前电动汽车的两大痛点之一,而SiC的加入,显然能够一定程度上缓解电动汽车的续航焦虑。因此,不仅是在800V平台上SiC已经成为必选器件类型,在400V的主流平台上对SiC的需求也在不断增长。

单车SiC MOSFET需求分析;400V和800V平台差异?
据夏超介绍,目前对于SiC MOSFET功率器件而言,电动汽车对其的需求主要是体现在主驱上,后续也将在大功率车载充电器等部分有所体现。SiC SBD则更多地出现在Si IGBT/SiC SBD的混合模块当中,其对电驱部分效率的提升相比于SiC MOSFET而言很难凸显,因此安森美当前在电动汽车主驱上更为建议使用SiC MOSFET器件来提升车辆的性能。
当然,在主驱以及OBC上应用到的SiC MOSFET数量和规格也并不相通。具体而言,马海川表示,目前主驱逆变器对SiC MOSFET的需求是48颗-60颗大电流芯片,通常需要导通电阻为25mΩ以下的单颗SiC MOSFET芯片,另外,OBC与DC/DC根据设计的不同,需求4-20片导通电阻为60mΩ到80mΩ的单颗SiC MOSFET芯片。
从导通电阻的规格上来看,主驱逆变器上使用的SiC MOSFET要求会更高。那么800V平台上与400V平台所用到的SiC器件会有哪些差别?实际上,电压平台的提高,主要对SiC器件的耐压值提出了更高的要求。目前400V平台一般采用耐压值为650V的SiC器件,而800V平台上只需将650V的SiC器件切换到1200V即可。
尽管硅基IGBT同样有耐高压的产品可以被应用于电动汽车的800V平台上,比如保时捷在2018年推出的电动跑车Taycan,就在800V平台上选择了硅基IGBT作为主驱逆变器的核心。
但在800 V高压平台上,SiC将能够更为充分地发挥其自身作为宽禁带半导体的特点,可有效降低器件的开关及导通损耗。并且在同等功率等级下,由于电压的提升,对于输出电流的需求会有明显的降低,可使用更少的同规格SiC功率器件来实现。所以,目前市面上其他已经量产的800V平台车型,几乎都使用SiC器件。

SiC大规模上车之路,如何避免器件失效风险

随着需求增长以及应用的深入,作为大规模上车不过5年时间的新材料新器件,在SiC应用的过程中也并不总是一帆风顺。
今年4月,国家市场监督管理总局公开了特斯拉提交备案的召回计划,自2022年4月7日起,召回生产日期在2019年1月11日至2022年1月25日期间的部分进口及国产Model 3电动汽车,共计127785辆。
对于这次召回的原因,文件中显示,本次召回范围内车辆的后电机逆变器功率半导体元件可能存在微小的制造差异,其中部分车辆使用一段时间后元件制造差异可能会导致后逆变器发生故障,造成逆变器不能正常控制电流。此故障发生在车辆处于停车状态时,会导致车辆无法启动;此故障发生在车辆行驶状态时,会导致车辆失去行驶动力,极端情况下可能增加车辆发生碰撞的风险,存在安全隐患。
而据了解,Model 3系列车型中前电机逆变器采用的是硅基IGBT,后电机均采用SiC MOSFET。因此按照“车辆的后电机逆变器功率半导体元件”的描述,很可能是指SiC MOSFET。
对于SiC器件在电动汽车中出现失效的情况,夏超认为主要有两种情况:一是上述公告中提到的制造差异,SiC MOSFET器件在生产制造过程中由于一致性差异所导致的问题;二是在客户实际的使用过程中,可能会出现多种实验室未能测试的盲区,进而导致器件出现失效等意外情况。
从芯片厂商的角度,要避免SiC器件失效的情况发生,则可以从两个方面来采取相应措施:首先是要加严生产制造过程中的测试标准,实现全产业链的动态可溯源,将故障风险阻隔在出厂前;其次与整车及动力整合厂商深入合作,搜集尽可能多的恶劣工况,在实验室加以模拟仿真后,更需要在实际的运行场景下进行多维度的暴力测试,以保证消费者在驾乘时的绝对安全。

解决产能、供应问题,助力碳化硅加速渗透

显然,随着电动汽车市场的爆发式增长,对于SiC的需求也在不断提高。以在旗下车型大规模采用SiC器件的特斯拉为例,目前特斯拉Model3中只在后电机逆变器模块上用上SiC MOSFET,但据测算,如果车用功率器件全采用SiC,单车用量将达到0.5片6寸SiC晶圆。那么如特斯拉旗下车型的车用功率器件全部采用SiC,以其去年93万台销量的需求计算,一年的6寸SiC晶圆需求就高达46.5万片,以如今全球SiC衬底产能来看甚至无法满足一家车企的需求。
因此产能和供应,是限制SiC上车的其中一个重要原因。在产能以及供应方面,派恩杰与国际顶尖车规级SiC晶圆代工厂有深厚的合作关系,也是其亚洲最大的客户,产能供应具有明显优势。在全球芯片短缺的背景下,派恩杰的供货周期明显短于同行业的友商,且产品目录齐全,能够保证各大主流应用的持续供应。
据了解,目前派恩杰的SiC MOSFET已经在多家汽车龙头企业及tier 1稳定交付,包括OBC与DC-DC等应用。其中在一些行业头部客户,派恩杰已经成为主要供应商,并且公司SiC产品已经广泛运用于汽车OBC。而对于一些汽车主驱方案,派恩杰也在与客户验证并已初步取得进展,同时也在进行全桥、半桥、单管并联方案的研究。
此外,派恩杰还将积极布局功率半导体模块的开发,配合车厂研制性能优良的主驱逆变器用的SiC功率模块。针对SiC产能的紧缺,派恩杰半导体也在积极调研国内的SiC产业链,为进一步扩大产能做布局,以满足未来海量的SiC功率器件的市场需求。
而作为SiC器件领域的国际大厂,安森美近期在多地实现了对SiC功率器件产能的提升目标。今年8月,安森美在美国新罕布什尔州哈德逊市的SiC工厂顺利剪彩落成,在该基地将会帮助安森美的SiC晶圆产能同比提升5倍;近期,安森美持续将捷克境内的工厂进行投资扩建,这一举措在未来两年内将会使得该基地的SiC产能提高16倍;与此同时,安森美还在罗马尼亚成立新研发中心
据了解,安森美SiC功率器件包括SiC MOSFETs、SiC二极管、以及混合SiC模块三类,并可选配性能更佳的压铸模封装。目前安森美的车规级产品在国内的各大电驱大厂及新势力均有合作,不仅是应用于电动汽车的主驱,未来还将在OBC等领域进行更为深度的合作。
在主驱功率封装技术方面,按照规划,安森美将在2023年中期从双面间接水冷过渡到直接水冷模式,预计到2023年底会实现双面直接水冷,2024年中期进一步优化为双面直接水冷+方案,核心目的是为了不断提升模块的功率密度。
可以看到,无论是国内还是国外,在市场需求推动下,SiC衬底、器件的扩产规模以及速度都相当迅速。产能的增加将会推动SiC器件价格进一步下降,同时SiC器件在电动汽车中的渗透率增长也将迎来新一轮加速。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 安森美半导体

    关注

    17

    文章

    565

    浏览量

    63150
  • 碳化硅
    +关注

    关注

    25

    文章

    3308

    浏览量

    51714
  • 派恩杰
    +关注

    关注

    0

    文章

    36

    浏览量

    3479
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    探索碳化硅如何改变能源系统

    )、数据中心和电网基础设施日益增长的需求。相比传统的硅器件,碳化硅技术更具优势,尤其是在功率转换效率和热敏感性方面。碳化硅对电子、电力行业的整体影响可带来更强的盈利能力和可持续性。 来自两家行业领先半导体
    的头像 发表于 10-02 17:25 1409次阅读

    Wolfspeed 200mm碳化硅材料产品组合开启大规模商用

    全球碳化硅 (SiC) 技术引领者 Wolfspeed 公司(美国纽约证券交易所上市代码:WOLF)宣布,Wolfspeed 200mm 碳化硅材料产品开启大规模商用。这一重要里程碑标志着 Wolfspeed 加速行业从硅向
    的头像 发表于 09-11 09:12 1282次阅读

    碳化硅器件的应用优势

    碳化硅是第三代半导体典型材料,相比之前的硅材料,碳化硅有着高击穿场强和高热导率的优势,在高压、高频、大功率的场景下更适用。碳化硅的晶体结构稳定,哪怕是在超过300℃的高温环境下,打破了传统材料下器件的参数瓶颈,直接促进了新能源等
    的头像 发表于 08-27 16:17 1112次阅读
    <b class='flag-5'>碳化硅</b>器件的应用优势

    碳化硅晶圆特性及切割要点

    01衬底碳化硅衬底是第三代半导体材料中氮化镓、碳化硅应用的基石。碳化硅衬底以碳化硅粉末为主要原材料,经过晶体生长、晶锭加工、切割、研磨、抛光、清洗等制造过程后形成的单片材料。按照电学性
    的头像 发表于 07-15 15:00 856次阅读
    <b class='flag-5'>碳化硅</b>晶圆特性及切割要点

    碳化硅功率器件有哪些特点

    随着全球对绿色能源和高效能电子设备的需求不断增加,宽禁带半导体材料逐渐进入了人们的视野。其中,碳化硅(SiC)因其出色的性能而受到广泛关注。碳化硅功率器件在电力电子、可再生能源以及电动汽车等领域的应用不断拓展,成为现代电子技术的
    的头像 发表于 04-21 17:55 997次阅读

    国产碳化硅MOSFET在OBC+DCDC及壁挂小直流桩中的应用

    国产碳化硅MOSFET在OBC+DCDC及壁挂小直流桩中的应用
    发表于 04-02 11:40 0次下载

    SiC碳化硅二极管公司成为国产碳化硅功率器件行业出清的首批对象

    器件能力的企业之所以面临被淘汰的风险,主要源于以下多维度原因:     1. 碳化硅二极管技术门槛低导致市场同质化与价格战 碳化硅二极管(如肖特基二极管)技术相对成熟,结构简单,进入门槛较低。国内众多企业涌入这一领域,导致产能过
    的头像 发表于 02-28 10:34 681次阅读

    碳化硅MOSFET的优势有哪些

    随着可再生能源的崛起和电动汽车的普及,全球对高效能、低能耗电力电子器件的需求日益增加。在这一背景下,碳化硅(SiC)MOSFET作为一种新型宽禁带半导体器件,以其优越的性能在功率电子领域中崭露头角
    的头像 发表于 02-26 11:03 1270次阅读

    碳化硅行业观察:2025年SiC功率器件厂商大洗牌

    2025年碳化硅(SiC)功率器件设计公司倒闭潮反映了行业加速洗牌的必然趋势,其背后是技术、资本、供应链和市场需求的多重挑战。而“SiC模块批量上车业绩”成为企业生存基础的核心逻辑,与
    的头像 发表于 02-26 07:08 1178次阅读

    碳化硅薄膜沉积技术介绍

    多晶碳化硅和非晶碳化硅在薄膜沉积方面各具特色。多晶碳化硅以其广泛的衬底适应性、制造优势和多样的沉积技术而著称;而非晶碳化硅则以其极低的沉积温度、良好的化学与机械性能以及广泛的应用前景而
    的头像 发表于 02-05 13:49 1795次阅读
    <b class='flag-5'>碳化硅</b>薄膜沉积技术介绍

    碳化硅功率器件的散热方法

    产生大量热量,如果散热不良,会导致器件性能下降甚至失效。因此,高效的散热方法对于确保碳化硅功率器件的稳定运行至关重要。本文将详细介绍碳化硅功率器件的散热方法,涵盖空气自然冷却散热、水冷散热、金属基板散热以及其他先进散热技术。
    的头像 发表于 02-03 14:22 1173次阅读

    碳化硅的耐高温性能

    在现代工业中,高性能材料的需求日益增长,特别是在高温环境下。碳化硅作为一种先进的陶瓷材料,因其卓越的耐高温性能而受到广泛关注。 1. 碳化硅的基本特性 碳化硅是一种共价键合的陶瓷材料,
    的头像 发表于 01-24 09:15 2797次阅读

    碳化硅在半导体中的作用

    碳化硅(SiC)在半导体中扮演着至关重要的角色,其独特的物理和化学特性使其成为制作高性能半导体器件的理想材料。以下是碳化硅在半导体中的主要作用及优势: 一、碳化硅的物理特性 碳化硅具有
    的头像 发表于 01-23 17:09 2427次阅读

    产SiC碳化硅MOSFET功率模块在工商业储能变流器PCS中的应用

    *附件:国产SiC碳化硅MOSFET功率模块在工商业储能变流器PCS中的应用.pdf
    发表于 01-20 14:19

    什么是MOSFET栅极氧化层?如何测试SiC碳化硅MOSFET的栅氧可靠性?

    随着电力电子技术的不断进步,碳化硅MOSFET因其高效的开关特性和低导通损耗而备受青睐,成为高功率、高频应用中的首选。作为碳化硅MOSFET器件的重要组成部分,栅极氧化层对器件的整体性能和使用寿命
    发表于 01-04 12:37