0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

现实世界超分辨率存在的问题

OpenCV学堂 来源:机器之心 作者:机器之心 2022-09-13 10:49 次阅读

来自腾讯 ARC Lab 的研究者们提出利用无监督的度量学习, 来训练现实场景下可调节的图像超分辨率任务。

现实世界超分辨率 (Real-world super-resolution) 是指从包含真实退化的低分辨率图像中复原得到高分辨率的图像。 可调节的现实世界图像超分辨率是一个很有挑战的任务, 因为降质 (degradation) 过程复杂且未知,可调节的交互机制很难通过有监督的训练来完成。 对于可调节的图像超分辨率, 之前的工作主要在经典退化的仿真数据上进行研究,也就是说我们已知了退化类型和退化强度。虽然这种设计在仿真数据上有不错的表现,但在现实场景下的应用仍然存在很多问题:

经典的仿真退化很难模拟复杂的现实世界退化,训练出的网络在现实世界数据上重建效果较差。同时,这种设定下训练得到的可调节交互机制在现实世界数据上的调节效果也会大打折扣。

虽然高阶退化可以用来仿真现实世界的低清图像,但这种仿真退化下的退化强度是未知的,很难通过有监督的训练来构建这种可调节交互机制。

最近无监督的对比学习在底层视觉领域受到越来越多的关注。这类方法方便了复杂降质特征的提取,这给来自腾讯 ARC Lab 的研究者们提供了一个思路: 是否可以利用对比的方式无监督的构建现实场景下图像超分辨率的可调节交互机制?

这篇工作的核心是利用度量学习在高阶仿真退化中,通过对比不同样本退化强度大小的方式无监督地构建退化强度的度量空间。度量空间中的退化得分不代表真实的退化强度,但可以反映退化强度的相对大小。本篇文章提出的方法(MM-RealSR)通过度量空间中的退化得分来构建现实场景下图像超分辨率的可调节交互机制。 本文提出了在复杂的退化空间中,划分两个度量空间,分别是广义 noise 和广义 blur。因为这两种退化因素是真实场景下最为常见的也是人们最关注,和最需要调节的。MM-RealSR 在现实场景下可以达到如下图 1 的调节效果。相比于近几年其他可调节复原方法, MM-RealSR 不仅实现了现实场景下的可调节图像超分辨率, 整体重建结果也更加自然。

图 1. MM-RealSR 在真实场景下的可调节超分辨率效果 现有可调节复原方案的回顾与对比 如图 2 所示,首先来看,现有方案针对的图像退化设定是低阶的,需要已知退化类型和退化强度的。本文提出的方案面向现实场景,退化过程是高阶的,未知退化类型和退化强度的。

1b2cb626-30f8-11ed-ba43-dac502259ad0.png

图 2. 本文提出方案与现有方法的对比 MM-RealSR 结构 本文关注真实场景中最常见的两种退化因子,广义 noise 和广义 blur,并对这两种退化因子做了一般化的定义如图 3 所示。其中 noise 包含高斯噪声、泊松噪声,和 JPEG 压缩等;blur 包含各向同性、各向异性,以及随机尺寸变换等模糊因素。

1b480f48-30f8-11ed-ba43-dac502259ad0.png

图 3. 退化因子的定义 针对这两种退化因子,本文提出的无监督退化估计模块如图 4 所示。通过度量学习,该模块将难以量化的现实世界退化强度映射到两个独立的度量空间之中。通过不同退化强度之间的大小对比,构建度量空间中的距离关系。本文额外通过一个锚点损失函数限制度量空间的分布。虽然度量空间中的退化得分无法反映真实的退化强度,但可以体现退化强度的相对大小关系。本文将无监督的退化估计模块和图像超分辨率模块进行联合训练,来构建退化得分和重建结果之间的可调节关系。

1b57249c-30f8-11ed-ba43-dac502259ad0.png

图 4. 基于度量学习的无监督退化估计模块 本文提出的总模型结构如图 5 所示。由退化估计模块、状态变量生成模块,以及重建模块构成。其中状态变量生成模块将预测到的退化得分转化成一组状态变量,并将这组状态变量以仿射变换的方式注入图像重建模块当中去,起到调节重建结果的作用。实验证明,本文提出的方法兼顾优越的重建效果和可调节能力。

1b684970-30f8-11ed-ba43-dac502259ad0.png

图 5. 基于度量学习的可调节现实世界图像超分辨率网络 损失函数 本文通过 L1,Perceptual 和 GAN 复原损失函数来保证图像重建质量,通过度量损失函数(margin ranking losses)来训练噪声度量空间和模糊度量空间。度量损失函数的表达式:

1b93dfae-30f8-11ed-ba43-dac502259ad0.png

为了控制度量空间中评分的分布,本文还提出了一个锚点损失函数:

1ba255a2-30f8-11ed-ba43-dac502259ad0.png

和现有的现实世界图像超分辨率工作 Real-ESRGAN 类似,本文采用高阶退化的仿真数据作为训练数据。更多的细节请参见论文。 实验结果 研究者们在现实世界的低质量数据上做了重建效果的测试:

1bb2bb4a-30f8-11ed-ba43-dac502259ad0.png

1be2d3a2-30f8-11ed-ba43-dac502259ad0.png

可以看到,本文提出的方法在具备交互能力的基础上,超分辨率的性能也达到了 SOTA 的水平,主观结果也更加美观自然。 研究者们在现实世界数据上对无监督退化评分器的评分能力进行了测试:

可以看到,无监督退化评分器可以较好地评估现实场景下的退化强度。 研究者们在现实世界数据上对网络的交互重建能力进行了测试:

可以看到,对比现有方法,MM-RealSR 在交互重建能力上有更好的表现。它的交互范围更大,重建效果更好。 小结 本文提出了在真实场景下,可调节的维度主要是广义 noise 和广义 blur 两方面。通过无监督的度量学习,首次实现了真实场景下可调节的图像超分辨率。提出的方法在调节能力和超分辨率性能上都取得了优异的表现。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    6512

    浏览量

    87608
  • 函数
    +关注

    关注

    3

    文章

    3882

    浏览量

    61310
  • 超分辨率
    +关注

    关注

    0

    文章

    25

    浏览量

    9894

原文标题:ECCV 2022 | 可调节的真实场景图像超分辨率, 腾讯ARC Lab利用度量学习来解决

文章出处:【微信号:CVSCHOOL,微信公众号:OpenCV学堂】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    EVAL_PASCO2_SENSOR为什么无法从较低的分辨率高速获得更高的分辨率

    我有一个图像 EVAL_PASCO2_SENSOR,支持高达 3840x2160 分辨率的超高速和高速。 我能以快的速度拍摄所有静止画面。 但是,当我尝试获得更高分辨率(3840x2160)的静态
    发表于 02-22 07:58

    #硬声创作季 微电子工艺:81.2光刻分辨率

    IC设计工艺分辨率
    Mr_haohao
    发布于 :2022年10月21日 02:07:36

    #硬声创作季 微电子工艺:81.3光刻分辨率--2

    IC设计工艺分辨率
    Mr_haohao
    发布于 :2022年10月21日 02:08:42

    什么是cif分辨率

    什么是cif分辨率 CIF :   common intermediate format   &
    发表于 05-28 16:31

    分辨率图像重建方法研究

    分辨率图像重建方法研究分辨率图像重建就是由低分辨率图像序列来估计高分辨率图像,已成为当前研究
    发表于 03-14 17:08

    常见屏幕比例与分辨率详解

    开孔的大小了,所以其实只是名义上有到而已,显示器根本显示不了。  · 更高   更高的 4:3 分辨率存在,像是 QUXGA,但这只是个理论上的名字。在真实世界没有采用这个分辨率的产品
    发表于 02-26 15:31

    分辨率织网(MRM)技术概览

    一个顶点。通过MRM,无论在创作还是实际运行时期,都可方便更改3D物体的分辨率。由于分辨率的变化非常微小,所以在一个动态的3D虚拟世界中,实际根本不可能注意到其间的区别。 优点:Intel MRM有效解决了
    发表于 09-05 11:58

    新手关于图像分辨率的问题~

    各位大神好,我是一个新手,求教各位!用matlab新三步法实现图像分辨率,已经有定义为 motionEstNTSS的新三步法代码。然后在命令窗口输入imgP=imread('D:\5.jpg
    发表于 05-19 16:14

    分辨率图像评价问题(MSE求解)

    (MSE)ps1=(256^2)/MSE;PSNR=10*(log10(ps1))这是我写的程序,求分辨率图像的效果,按道理采用最邻近插值出来的MSE应该大于双线性插值的MSE,可是为什么我求出来刚好相反呢?求大神帮忙,万分感谢
    发表于 07-15 11:08

    精度?分辨率?弧分?如何管理您的电机控制设计

    ,ADC的模拟信号量化是有限的数量步进,而由此导致的误差称为量化误差。这里便涉及到“精度”和“分辨率”这两个术语。 [/url]图1:车辆电机控制系统的典型系统框图精度以12位[url=http
    发表于 08-21 14:22

    精度?分辨率?弧分?如何管理您的电机控制设计

    ,ADC的模拟信号量化是有限的数量步进,而由此导致的误差称为量化误差。这里便涉及到“精度”和“分辨率”这两个术语。 图1:车辆电机控制系统的典型系统框图 精度以12位轴角数字转换器(RDC)为例。转轴
    发表于 07-18 16:35

    ADC精度:精度与分辨率的理解

    的偏离。这是因为ADC以及驱动器电路导致的噪声会降低ADC的分辨率。此外,如果DC电压被施加到理想ADC的输入上并且执行多个转换的话,数字输出应该始终为同样的代码(由图1中的黑点表示)。现实中,根据总体
    发表于 09-12 11:49

    示波器的垂直分辨率相关知识分享

    可以通过软件提高分辨率。我们将ADC转换成的离散数字信号称为采样点,相邻采样点之间的时间称为采样时间间隔,几个采样点可以组成一个波形点,波形点储存在捕获存储区内,波形点共同组成一条波形记录,重构显示
    发表于 12-16 11:38

    峰峰值分辨率与有效分辨率的区别

    低带宽、高分辨率ADC的分辨率为16位或24位。但是,器件的有效位数受噪声限制,而噪声则取决于输出字速率和所用的增益设置。有些公司规定使用有效分辨率来表示该参数,ADI则规定使用峰峰值分辨率
    发表于 12-15 07:56