0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

LFP和三元电池循环膨胀力研究!

锂电联盟会长 来源:锂电联盟会长 作者:锂电联盟会长 2022-08-30 10:35 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

本文利用自主研发的膨胀力测试装置研究动力电池在室温充放电过程中的压力变化以及全寿命周期内的膨胀力变化,模拟锂离子电池在电动汽车使用过程中膨胀力的变化,为单体电池防爆阀压力设计和电池模组结构强度设计提供参考依据。

1 实验

本实验分别对51Ah三元正极材料和40Ah磷酸铁锂正极材料电池进行不同紧固条件下的充放电及循环过程膨胀力测试。

080685bc-280c-11ed-ba43-dac502259ad0.png

图1 实验所用的膨胀力测试装置

将安装在压力测试设备上的电池置于25℃条件下,连接好充放电设备,按照以下充放电流程进行实验。

51Ah三元(NCM622)电池充放电流程:

(1) 1 (51A)放电至截止电压2.8V;

(2) 休眠60min;

(3) 1 (51A)CCCV充至截止电流0.05(2.55A);

(4) 休眠60min;

(5) 重复步骤(1)~(4)进行循环测试。

40Ah磷酸铁锂电池充放电流程:

(1) 1 (40A)放电至截止电压2.5V;

(2) 休眠60min;

(3) 1 (40A)CCCV充至截止电流0.05(2.0A);

(4) 休眠60min;

(5) 重复步骤(1)~(4)进行循环测试。

2 结果与讨论

2.1 不同正极材料电池充放电及循环过程膨胀力变化

图2(a)、(b)分别为51Ah的NCM622三元电池和40Ah的LiFePO4电池充放电过程中电压及膨胀力变化曲线,电池的紧固初始压力均为1.0kN。从图2中可以看出三元电池与LiFePO4电池充放电膨胀力变化曲线完全不同:三元电池膨胀力随充放电电压升高或降低而增大或减小,而LiFePO4电池充(放)电过程均有一波峰-波谷(波谷-波峰)。充电初期,膨胀力也像三元电池一样随电压升高而增大,充电至28%荷电状态,膨胀力达到1.33kN,然后膨胀力开始下降,充电至60%时膨胀力下降至最小1.17kN;随后膨胀力上升,直至100%时达到最大,为1.55kN。放电过程中膨胀力随电压降低而减小,至65%左右时减至最小,为0.98kN;随着继续放电,膨胀力会增加,放电至34%时出现一个波峰,膨胀力增加至1.1kN,随后膨胀力随电压降低减小,放电至0%时膨胀力减小至0.64kN。

08155cf4-280c-11ed-ba43-dac502259ad0.png

图2 NCM622(a)和LiFePO4(b)电池充放电过程中膨胀力变化曲线

随着充放电的变化,电池力学行为也随之变化,有研究认为这是电池内部材料应力的一种数值反映,而电池内部材料应力变化主要是由电池充放电过程中正负极材料体积膨胀引起。两种电池膨胀力的变化不一致:两种体系电池的负极为相同石墨材料,在充电过程中由于有锂离子的嵌入,石墨结构会发生变化,体积发生膨胀,放电时锂离子脱出,体积减小;LiFePO4为橄榄石结构,结构稳定,在充电过程中LiFePO4的脱锂产物是磷酸铁(FePO4), 实际的充放电过程是处于FePO4 /LiFePO4两相共存的状态。FePO4与LiFePO4的结构极为相似,体积也较接近。而且电池充电前期 LiFePO4 收缩不明显,石墨膨胀,所以压力上升,充电至中期LiFePO4收缩,这会抵消石墨的一部分膨胀,膨胀力下降;后期LFP不再收缩,但石墨持续膨胀,所以膨胀力又升高。放电过程正好与此相反。三元体系属于六方晶系,是一种层状结构化合物。三元材料在充放电过程中由于晶胞参数和的变化正好相反,所以晶胞体积的变化很小,大概只有2%左右,充放电过程中电池体积变化只是取决于充电时负极体积膨胀,放电时负极体积收缩,这也从电池充放电膨胀力结果上得到了证明。

图3(a)和(b)分别为三元和LiFePO4两种不同正极材料的电池100次循环的膨胀力变化曲线。虽然两种正极材料单次充放电过程中膨胀力变化趋势不一致,但在循环过程中,随着循环次数的增加,膨胀力最大和最小值均有升高。只是三元电池100次循环后最大膨胀力增加6.9%,大于LiFePO4 电池的增加比例3.9%。

082a0398-280c-11ed-ba43-dac502259ad0.png

图3 电池100次充放电膨胀力变化曲线

2.2 不同正极材料电池循环容量衰减与膨胀力的变化规律

图4(a)为NCM622和LiFePO4(LFP)电池的容量衰减曲线,两种电池的容量衰减均符合线性衰减规律,通过斜率比,NCM622电池的衰减速度同期要明显快于LFP电池。NCM622电池循环达2000次,容量剩余为82%;LiFePO4电池循环2000次时容量剩余为90%,预计到寿命终止(容量剩余为80%)时循环次数可达4000次。

0836b4e4-280c-11ed-ba43-dac502259ad0.png

图4 NCM622与LFP动力电池的容量保持曲线(a)和循环过程中的膨胀力变化曲线(b)

图4(b)为NCM622和LFP动力电池在循环过程中的膨胀力变化曲线,两种体系电池的膨胀力均随着循环的进行而增加,NCM622电池循环膨胀力增长规律为y=0.0018+3.3495,LiFePO4电池循环膨胀力增长规律为y=0.0007+1.3314,可以看出LiFePO4电池的循环膨胀力增长速度较慢。当循环达到2000次时,NCM622电池的膨胀力达到9.5kN,而LFP电池循环到2000次膨胀力为3.65kN,当LFP电池循环到4000次时,膨胀力预计为4.13 kN。无论是乘用车还是商用车,在设计模组集成时都必须考虑模组元件能够承受整个生命周期电池的膨胀力。

2.3 膨胀力释放对循环寿命的提升作用

通过上述讨论我们了解了在恒位移条件下膨胀力和容量保持的变化规律,在恒位移的条件下,膨胀力的不断增长加剧了电池的容量衰减。对此,我们提出通过改变对电池的紧固方式进行恒压力测试,通过增加弹簧装置释放电池循环过程中不断增加的膨胀力,使电池有可能在被均匀支撑的同时发生可控膨胀。

0853d2cc-280c-11ed-ba43-dac502259ad0.png

图5 恒位移和恒压力测试对电池循环过程中容量衰减的影响

通过恒位移和恒压力测试条件下容量衰减对比,无论是NCM622还是LFP电池,循环过程中不断增加的膨胀力得以释放都可以减缓容量衰减速度,提升电池使用寿命。根据两种不同测试条件下的衰减规律 (图5):恒压力测试条件下,NCM622电池循环预计可以提升到2900 次,循环寿命提升30%,LFP电池循环预计提升至5000次,循环寿命提升25%,可见释放循环过程中的膨胀力对改善电池的衰减具有重要提升作用。

3 结论

动力电池充放电过程中,正极材料不同,电池膨胀力的变化不同。三元电池的膨胀力与电压密切相关:膨胀力随充电电压升高而增大,随放电电压降低而减小;整体随着充放电循环次数的增加,电池膨胀力也随之上升。LiFePO4在充放电过程中电压平台区,电池膨胀力会出现一个波谷和一个波峰,膨胀力也相应随之变化;磷酸铁锂电池的容量衰减速度低于NCM622电池,2000次循环容量剩余分别为82%和90%,此时NCM622电池膨胀力达到9.5kN,远远大于LFP的3.65kN。在恒位移条件下不同电化学体系电池膨胀力的变化特征为防爆阀开启压力和模组安全结构设计提供技术参考。研究表明释放循环过程中逐渐增加的膨胀力可以提升电池的循环寿命。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 动力电池
    +关注

    关注

    113

    文章

    4664

    浏览量

    81051
  • 正极材料
    +关注

    关注

    4

    文章

    328

    浏览量

    20181
  • 三元电池
    +关注

    关注

    6

    文章

    170

    浏览量

    9789

原文标题:LFP和三元电池循环膨胀力研究!

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    探索磷酸铁锂(LFP电池的优势和工艺

    磷酸铁锂(LiFePO4、LFP),因其作为正极材料的卓越稳定性、安全性和成本效益,在研究和应用方面都受到了广泛关注。磷酸铁锂电池广泛用于电动汽车和可再生能源存储,其安全性高、生命周期相对
    的头像 发表于 08-05 17:54 1399次阅读
    探索磷酸铁锂(<b class='flag-5'>LFP</b>)<b class='flag-5'>电池</b>的优势和工艺

    锂离子电池正极材料之一:三元高镍化的研究现状

    衰减机制对于提高锂离子电池循环稳定性与安全性能具有重大指导意义。#Part.01锂电池正极材料——三元材料锂电池正极材料是锂
    的头像 发表于 08-05 17:52 1115次阅读
    锂离子<b class='flag-5'>电池</b>正极材料之一:<b class='flag-5'>三元</b>高镍化的<b class='flag-5'>研究</b>现状

    三元锂8650电池组 3.7V7.4V12V2.5AH10AH机器人智能设备专用电池

    三元锂 8650 电池组凭借其多样的电压和容量选择、卓越的性能优势以及广泛的应用场景,成为了机器人智能设备的理想电源。随着科技的不断进步,相信这款电池组还将在更多领域发挥重要作用,推动机器人智能设备行业迈向新的高度。
    的头像 发表于 02-06 16:23 927次阅读
    <b class='flag-5'>三元</b>锂8650<b class='flag-5'>电池</b>组 3.7V7.4V12V2.5AH10AH机器人智能设备专用<b class='flag-5'>电池</b>

    锂离子电池三元电池,谁更安全?

    锂离子电池三元电池在安全性上各有优劣。锂离子电池凭借其成熟的技术和稳定的性能,在安全性方面有着坚实的保障;三元
    的头像 发表于 01-23 15:19 1341次阅读
    锂离子<b class='flag-5'>电池</b>和<b class='flag-5'>三元</b>锂<b class='flag-5'>电池</b>,谁更安全?

    必知!三元电池的正确充电法,让你的设备寿命倍增

    掌握三元电池这些充电门道,不仅能延长电池服役期,还能时刻保障设备电力满满,为我们的便捷生活持续护航。从今天起,改变充电习惯,让电池陪你更久!
    的头像 发表于 01-17 16:57 4197次阅读
    必知!<b class='flag-5'>三元</b>锂<b class='flag-5'>电池</b>的正确充电法,让你的设备寿命倍增

    三元电池和磷酸铁锂电池哪个好?看完这篇你就懂了!

    三元电池和磷酸铁锂电池哪个好?看完这篇你就懂了!
    的头像 发表于 01-17 16:53 3216次阅读

    基于梯度下降算法的三元电池循环寿命预测

    摘要:随着电动汽车产销量的持续攀升,对于动力电池循环寿命性能的评估及预测已成为行业内重点关注的问题之一。对某款三元电池进行了25℃及45℃下的长周期
    的头像 发表于 01-16 10:19 778次阅读
    基于梯度下降算法的<b class='flag-5'>三元</b>锂<b class='flag-5'>电池</b><b class='flag-5'>循环</b>寿命预测

    电池充电器和铅酸电池充电器怎么区分?有和不同?

    是基于材料的性能之别,铅酸电池的正负极材料为氧化铅、金属铅、浓硫酸;锂离子电池则有四个构件:正极(钴酸锂/锰酸锂/磷酸铁锂/三元)、负极石墨、隔膜和电解质,由此导致的不同主要有: 1、标称电压不同:单体
    发表于 01-15 10:06

    朗凯威锂电池定制 4串田字形三元,14.8V铁锂、12.8V锂电池保护板,持续5A、10A

    4 串田字形的三元、铁锂锂电池保护板,凭借其精准的电压适配、差异化的电流承载能力以及可靠的安全保障,在不同电子设备领域发光发热。了解它们的特性,能帮我们在 DIY 项目、设备维修升级时选对 “搭档”,让锂电池发挥最大效能,开启更
    的头像 发表于 01-09 17:05 1543次阅读
    朗凯威锂<b class='flag-5'>电池</b>定制 4串田字形<b class='flag-5'>三元</b>,14.8V铁锂、12.8V锂<b class='flag-5'>电池</b>保护板,持续5A、10A

    电池技术深析:半固态电池与NMC三元电池的多维解读

    半固态电池Semi-SolidStateBattery在当下的电池技术领域,半固态电池与NMC三元电池无疑是两颗备受瞩目的“明星”,被众多
    的头像 发表于 01-07 18:05 4511次阅读
    <b class='flag-5'>电池</b>技术深析:半固态<b class='flag-5'>电池</b>与NMC<b class='flag-5'>三元</b>锂<b class='flag-5'>电池</b>的多维解读

    全新宁德时代140A三元大单体动力锂电池3.7V电动车储能动力电芯

    宁德时代140A三元大单体动力锂电池3.7V电动车储能动力电芯以其优异的性能、可靠的质量和广泛的适用性,为电动车和储能行业的发展注入了新的动力。相信在未来,随着技术的不断进步和创新,宁德时代将继续引领电池行业的发展,为我们带来更
    的头像 发表于 01-03 15:06 4203次阅读
    全新宁德时代140A<b class='flag-5'>三元</b>大单体动力锂<b class='flag-5'>电池</b>3.7V电动车储能动力电芯

    水库太阳能监控供电 太阳能板 三元电池

    水库太阳能监控供电系统中的太阳能板和三元电池相互配合,以清洁、可再生的太阳能为能源,摆脱了对传统市电的依赖,降低了长期运营成本,提高了监控系统的可靠性和灵活性,是水库现代化管理中一项极具价值的技术应用,为保障水库的安全稳定运行贡献着重要力量,也为水利设施的智能化发展提供
    的头像 发表于 12-31 16:40 871次阅读
    水库太阳能监控供电 太阳能板 <b class='flag-5'>三元</b>锂<b class='flag-5'>电池</b>

    特斯拉三元电池真实寿命,锂电池电芯批发 朗凯威

    特斯拉三元电池的寿命受多种因素影响,但在正常使用和维护下,其寿命可以相当长。特斯拉官方提供的数据和质保政策也为车主提供了额外的保障。然而,为了延长电池的使用寿命,车主仍然需要注意使用方式、充电
    的头像 发表于 12-30 09:40 1434次阅读
    特斯拉<b class='flag-5'>三元</b>锂<b class='flag-5'>电池</b>真实寿命,锂<b class='flag-5'>电池</b>电芯批发 朗凯威

    朗凯威锂电池 电池组 动力锂电池批发三元电池跑了 30 万还能用吗?答案来了!

    三元电池在行驶 30 万公里后,虽然性能有所下降,但仍有可能继续使用,或者通过合理的回收利用方式,实现其剩余价值。
    的头像 发表于 12-30 09:36 734次阅读
    朗凯威锂<b class='flag-5'>电池</b> <b class='flag-5'>电池</b>组 动力锂<b class='flag-5'>电池</b>批发<b class='flag-5'>三元</b>锂<b class='flag-5'>电池</b>跑了 30 万还能用吗?答案来了!

    三元锂电生命循环究竟是多长?朗凯威锂电电池定制 三元电池组DIY

    寿命长,节能环保无污染,维护成本低,充放电完全,重量轻等等优势,在一些宣传的资料里,有人认为三元电池寿命长,真的是这样吗?它的生命循环周期究竟多少次呢?让我们来揭开真相。
    的头像 发表于 12-19 15:59 1043次阅读
    <b class='flag-5'>三元</b>锂电生命<b class='flag-5'>循环</b>究竟是多长?朗凯威锂电<b class='flag-5'>电池</b>定制 <b class='flag-5'>三元</b>锂<b class='flag-5'>电池</b>组DIY