0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

高能锂硫电池用低弯曲致密单颗粒层电极

倩倩 来源:清新电源 作者:清新电源 2022-08-13 10:06 次阅读

研究背景

锂硫电池能量密度高,成本低,是理想的车用及储能器件。然而,S和Li2S较低的电子/离子电导率、多硫化锂的“穿梭效应”、电解液损耗,以及锂金属的腐蚀等,限制了其实际应用。采用薄膜电极,以及过量电解液 (E/S》10 μL mg-1)的锂硫电池通常具有良好的性能,但这种设计基本无法实用。近些年,人们通过开发极性材料或对材料进行表面改性来提高S负载量,以及降低电解液用量,取得了一定进展。然而,S电极高达70%的孔隙率这一关键参数在以往的报道中却很少被提及。相比于商业化的锂离子电池中孔隙率仅为20-30% 的NCMs电极,S电极孔隙和空洞占比过大,导致能量密度低,循环寿命寿命差。因此,要实现在贫液体系(E/S《4)下达到长循环寿命,降低S电极孔隙率的同时,保证电解液的充分浸润至关重要。目前,能够同时满足高含硫量和低孔隙率要求的实用S正极还很少被报道。

成果简介

近日,西北太平洋国家实验室(PNNL)Dongping Lu研究员团队在Energy & Environmental Science上发表题为“Low-Tortuous and Dense Single-Particle-Layer Electrode for High-Energy Lithium-Sulfur Batteries”的研究论文。作者通过在单粒子层电极中调整大颗粒构造分布,成功实现在垂直和平行两个维度上构建低迂曲度孔隙结构的S电极,该工作通过控制孔隙分布,实现降低高载量硫电极的孔隙迂曲度,这也为其他高比能电池体系倍率性能的提升提供了借鉴策略。

研究亮点

(1)通过排列大尺寸的二次S/C颗粒,制备低迂曲度单颗粒层电极,并阐明通过单颗粒层电极的低迂曲度增强高密度电极中的电解质渗透的原理,以及大尺寸S/C二次颗粒的高内部迂曲度有助于局部抑制多硫化物“穿梭效应”的作用机制。

(2)当S正极孔隙率降低到目前文献报道的最低值~45%时,即使在贫液体系E/S=4 μL mg-1的情况下,电池仍能提供4 mAh cm-2 (1001 mAh g-1)的高可逆容量。

图文导读

电极设计需要清楚地了解S/C材料对电解质润湿和LiPS扩散的影响,这可以通过计算流体动力学(CFD)模拟进行研究。如图1a和b所示,在电极孔隙率和电解液初始体积相同的情况下,大颗粒正极(LPC)的润湿性较好,电解液可以到达电极的深处。相比之下,电解液几乎无法穿透小颗粒正极(SPC)。

通过标量输运模拟进一步理解LiPS在LPC和SPC电极中的扩散行为。结果表明,LPC并不一定会加速LiPS的穿梭效应,但会改善电极润湿性。图1c和d分别比较了中间态(25 s)和稳态条件下LPC和SPC中的LiPS分布。对于大颗粒,在25 s后,小部分LiPS从大颗粒中扩散出来,颗粒内部仍然存在较多的LiPS。相比之下在同一阶段,小颗粒电极显示出更多的多硫化物外溢。

7ec75810-1a93-11ed-ba43-dac502259ad0.png

图1 不同正极的模拟与设计原理。LPC和SPC的(a)初始态(b)稳态电解液渗透;LPC和SPC中LiPS迁移的(c)中间态和(d)稳态;(e)S/C小颗粒和(f)最终形成的多颗粒层状电极示意图;(g)大S/C二次颗粒以及形成的(h)单颗粒层状电极示意图。

模拟结果表明,较大的二次粒子可以增强电极润湿性能,同时减少LiPS的穿梭效应。基于上述分析,采用与之相当甚至大于目标电极厚度的大颗粒来制备单颗粒层电极是可行的。

7f0b3742-1a93-11ed-ba43-dac502259ad0.png

图2 S/C材料形貌及电极结构示意图。(a)SPC表面 和(b)IKB/S更小的颗粒SEM图;SPC在低倍(c-d)和高倍(e-g)下的断层扫描图;(h)LPC表面和(i)IKB/S更大的颗粒SEM图。LPC在低倍(j-k)和高倍(l-n)下的断层扫描图。

如图2所示测试了二次颗粒形貌,小颗粒平均小于20 μm,大颗粒尺寸大于90 μm。SPC材料,在涂浆和压延过程中,小颗粒倾向于堆积成致密的多颗粒层电极(图2c, e)。在压力作用下,浆料随着颗粒沿平面方向扩散,形成水平排列的气孔(图2d, f)。

对于LPC,断面显微CT结果表明,电极由单层颗粒组成(图2k, m),在垂直和平面方向均有孔洞,这与单层颗粒层电极的设计相吻合。从重构的三维模型中可以观察到,LPC比SPC中有更多的电解液浸润通道。此外,由大颗粒组成的单颗粒层电极在平面方向上也具有更好的孔隙连通性,这有利于Li+沿平面方向的运输。

7f5945ae-1a93-11ed-ba43-dac502259ad0.png

图3 富液条件和贫液条件SPC和LPC电化学性能。0.1 C下SPC和LPC在富液条件(a-c)和贫液条件(d-f)循环性能;45%孔隙率的(g)SPC和(i)LPC在电解液浸润后的EDS谱图;SPC和(h)LPC的(j)EIS阻抗谱图,每30分钟采集一次。

图3 a-c比较了在过量加注电解液条件下,在0.1C下,SPC和LPC循环100次的电化学性能。在随后的循环中,LPC显示出比SPC更高的容量和更好的容量保持率。当孔隙率从62 %降低到53 %时,LPC电极的循环稳定性略有改善,即使在孔隙率极低(45%)时,也保持了类似的性能。经过30次循环后,孔隙率为62%、53%和45%的LPC电极的可逆容量分别为932、937和917 mAh g-1,容量保持率分别为87.9%、88.1%和88.7%。为了避免不同电池之间的偏差,作者测试了6个纽扣电池,并提供了误差线(图3d-f),表明LPCs在每个孔隙度水平上都具有恒定的高可逆容量,且重现性高。与SPC(图3h)相比,LPC(图3j)的电荷转移电阻(Rct)更小的小,这表明LPC电极的润湿性更好。

7fa0ac28-1a93-11ed-ba43-dac502259ad0.png

图4 LPC (a-b)和LPC (c-d)在不同放电深度下的非原位XRD图谱。

为了解不同载量的SPC和LPC (孔隙率为45%)在贫电解液条件下的反应机理,对其进行了高分辨率同步辐射XRD研究。从XRD结果可以看出,两种情况下都是在放电过程中生成的可溶性LiPS,但在后续过程中遵循不同的反应路径。与LPC电极相比,SPC电极的S-LiPS转换动力学要慢得多,这可能是由于电极润湿受限造成的。在LPC电极中,LiPS流出需要较长的扩散时间,这恰恰减少了LiPS的损失,也提高了Li2S的转化率。此外,LPC没有形成表面阻塞层,而是有更大且开放的孔隙允许LiPS的扩散,有助于比容量的提升。

7fe78d3c-1a93-11ed-ba43-dac502259ad0.png

图5 LPC(a-b)和SPC(c-d)首次放电曲线及对应的原位EIS阻抗谱;LPC(e-f)和SPC(g-h)的SEM图;LPC(i-j)和SPC(k-l)的EDS能谱。

通过原位电化学分析和电极形貌表征,进一步研究了高密度SPC和LPC中的硫反应。为了消除金属Li的干扰,采用Li4Ti5O12作为参比电极的三电极测试体系,这些EIS结果与电池性能和原位XRD一致,证实了SPC电极在反应过程中会出现阻塞现象进而导致失效,也凸显了LPC电极的优越性。

总结和展望

通过制备单粒子层电极,阐明并验证了低迂曲度硫正极的设计原理。在实际条件下,研究了硫电极结构对电池性能的影响。电极孔隙率不仅控制了电极的容积和比容量,也能影响硫反应和电解液浸润情况。在不牺牲硫利用率的情况下,降低电极孔隙率是发展真正的Li-S电池的关键一步。作者通过使用单粒子层S正极实现了贫液体系(E/S = 4µL mg-1)下孔隙率仅仅为~45%的高负载(4 mg cm-2)、高容量(~1001 mAh g-1)硫电极的制备,并研究了二次颗粒尺寸对电解液渗透性、LiPS穿梭和硫反应的关键影响。对于给定的电极孔隙率,LPC由大颗粒组成,比表面积较小,但颗粒尺寸较大,在硫利用率、反应动力学和容量保持方面优于小颗粒的SPC电极。LPC电极的低迂曲度孔道是电极快速浸润和促进LiPS扩散的必要条件。本研究为实用的高能锂硫电池开发和电极设计提供了新的思路。

文献链接

Low-Tortuous and Dense Single-Particle-Layer Electrode for High-Energy Lithium-Sulfur Batteries (Energy Environ. Sci., 2022, DOI: 10.1039/D2EE01442D)

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电解质
    +关注

    关注

    6

    文章

    756

    浏览量

    19690
  • 锂硫电池
    +关注

    关注

    7

    文章

    94

    浏览量

    13432
  • 能量密度
    +关注

    关注

    6

    文章

    280

    浏览量

    16295

原文标题:EES:孔隙率仅45%的低迂曲度、高密度单颗粒层状高比能硫正极

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    两个惰性电极可以构成原电池吗?

    两个惰性电极理论上可以构成原电池,但它们的应用和效率与活性电极相比较低。惰性电极不易参与氧化还原反应,因此通常用作电解槽中的电极,而不是原
    的头像 发表于 04-26 17:37 132次阅读

    电池中的两个电极能是相同的吗?

    在原电池的设计和运作中,两个电极是否可以相同,这取决于电池的类型和所需的电化学反应。
    的头像 发表于 04-26 17:32 112次阅读

    为什么单液原电池不能用相同的两个电极,而双液原电池可以呢?

    单液原电池与双液原电池在设计和工作原理上存在显著差异,这些差异决定了它们在使用电极时的不同策略。
    的头像 发表于 04-26 17:28 143次阅读

    光纤弯曲对衰减有多大影响

    光纤弯曲会对光信号的传输性能产生影响,主要通过弯曲引起的弯曲损耗来体现。弯曲损耗是由于光纤在弯曲时,光信号在光纤内部发生散射而引起的损耗。
    的头像 发表于 03-25 11:05 129次阅读

    燃料电池电极密封材料解析

    燃料电池电极密封材料解析 燃料电池是一种能够将氢气和氧气反应产生电能的设备。膜电极是燃料电池中的关键部件之一,它将氢气和氧气分别传输到阳极
    的头像 发表于 01-18 11:43 313次阅读

    金属电池重大突破:10分钟完成充电

    金属电池
    深圳市浮思特科技有限公司
    发布于 :2024年01月10日 15:29:27

    金属电池重大突破:10分钟完成充电,可循环至少6000次

    金属电池
    北京中科同志科技股份有限公司
    发布于 :2024年01月10日 09:19:17

    电极片褶皱问题

    25%硅碳负极体系,使用PAA作为粘结剂(PAA占比3.5%跟4%),循环300圈电池拆解,掉料严重,且边缘析溃烂,是热压热封有问题,还是本身PAA有问题? 明天补充拆解图片
    发表于 11-23 19:38

    电机轴承温度最高能多少度?

    这几天温度有些高达到90度,请问一下轴承温度一般最高能到多少度 他的名牌上要求加shell Gadus S2 v100润滑脂,暂时没有,我可以加点2号基脂代替么
    发表于 11-21 07:21

    太阳能电池电极制作工艺,我们该怎样选择电极材料?

    太阳能电池电极的制作是太阳能电池制造过程中的重要环节,它会直接影响太阳能电池的性能和稳定性。在其制作过程中,太阳能电池
    的头像 发表于 11-18 08:33 459次阅读
    太阳能<b class='flag-5'>电池</b><b class='flag-5'>电极</b>制作工艺,我们该怎样选择<b class='flag-5'>电极</b>材料?

    太阳能电池电极制作工艺,我们该怎样选择电极材料?

    太阳能电池电极的制作是太阳能电池制造过程中的重要环节,它会直接影响太阳能电池的性能和稳定性。在其制作过程中,太阳能电池
    的头像 发表于 11-16 08:33 240次阅读
    太阳能<b class='flag-5'>电池</b><b class='flag-5'>电极</b>制作工艺,我们该怎样选择<b class='flag-5'>电极</b>材料?

    电极片常见缺陷 电极片缺陷检测方法 电极片缺陷对电池性能的影响

    电极片常见缺陷 电极片缺陷检测方法 电极片缺陷对电池性能的影响  电极片是电池的重要组成部分之一
    的头像 发表于 11-10 14:54 829次阅读

    PL5353A SOT23-5 电池锂离子/聚合物电池保护集成电路

    一般说明 PL5353A产品是离子/聚合物电池保护的高集成解决方案。 PL5353A包含先进的功率MOSFET,高精度电压检测电路和延迟电路。 PL5353A被放入超小型SOT23-5封装中
    发表于 11-07 10:23

    弯曲的未来能源:钙钛矿太阳能电池的新领域

    钙钛矿电池是一种新型太阳能电池,其结构主要由钙钛矿材料构成。这种电池具有高效率、低成本、可弯曲等优点,被视为下一代太阳能电池的有力候选者。本
    的头像 发表于 11-06 13:23 708次阅读
    可<b class='flag-5'>弯曲</b>的未来能源:钙钛矿太阳能<b class='flag-5'>电池</b>的新领域

    电池磷酸铁生产流程简介

    是一种锂离子电池正极材料,化学式为 LiFePO4,主要用于各种锂离子电池。磷酸铁产品质量标准主要依据《锂离子电池炭复合磷酸铁
    发表于 09-12 13:22