0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

高光谱分辨率激光雷达测量低层大气温度-莱森光学

莱森光学 来源:莱森光学 作者:莱森光学 2022-07-07 10:24 次阅读

温度是重要的气象参数,早在1971年,某专家学者利用瑞利激光雷达成功地对大气温度进行了测量。然而,在30km以下的高度由于气溶胶的影响,利用瑞利激光雷达难以进行温度精确的测量。在过去的几10年激光雷达技术的发展过程中,有很多方法用来去除低空气溶胶散射的影响。专家利用干涉仪(FPI)尝试对大气散射中气溶胶散射信号和分子散射信号进行分离。2005年,有专家学者成功地利用FPI实现24h测量,在5km以下测量精度达到2K。1983年,又有专家学者提出将原子吸收滤波器用于高光谱分辨率激光雷达(HSRL)测量大气参量。他们在HSRL中使用了钡原子吸收滤波器测量了大气温度。与FPI相比,原子(分子)滤波器光路设计简单,不依赖于入射光的角度,光路调节简单,其吸收线在滤波器温度确定情况下比较稳定,用于低空测量时,在适当温度下对气溶胶信号有强烈的吸收,这样就可以提高分离气溶胶米散射和大气分子瑞利信号的精度。资料显示专家曾在532nm采用2个碘分子滤波器,在对流层大气温度测量中取得了较好的结果。据各项资料调查统筹显示基于碘分子滤波器的HSRL系统,可以有效地分离气溶胶散射和分子散射,从而利用瑞利散射测量对流层大气温度剖面。本文介绍了基于碘分子滤波器HSRL的系统结构,给出了利用该系统测量大气温度的原理和方法,并将测量结果与气象局探空数据进行了对比。

1基于碘分子滤波器HSRL及温度测量原理

1.1基于碘分子滤波器HSRL系统

采用的HSRL系统结构如图1所示,其主要由激光发射系统、信号接收系统和信号采集、处理及控制系统组成。高功率、窄线宽和频率稳定的532nm输出激光发射系统,其脉冲激光器为倍频的激光器,种子激光器为双波长、窄线宽及可调谐半导体泵浦非平面环形腔的固体激光器。利用碘分子吸收线将激光器的频率锁定在工作频率上。种子注入和频率锁定的激光通过扩束准直后经扫描镜发射到大气中,大气回波信号通过扫描镜和望远镜系统接收。接收到的回波信号分成两路,如图2(a)示,一路作为能量参考被直接探测,另一路则通过碘分子滤波器。激光频率锁定在吸收线谷底中心位置时,如图2(b)示,由于碘分子滤波器具有很高的抑制比,气溶胶散射几乎完全被滤除。表1给出了HSRL系统的主要参数。

pYYBAGLGQ_eANX9iAAP6b8Fbqbw840.png

图1大气温度测量HSRL系统

poYBAGLGQ_eADNfZAACkGG3JPlE260.png

图2基于碘分子滤波器HSRL探测原理示意图

pYYBAGLGQ_iAA9rmAAA1ydJWO-0586.png

表1基于碘分子滤波器的HSRL主要性能指标

1.2温度测量原理

为便于分析,边里省略了部分系统固有参数。式中:NRay和NMie分别为接收到的瑞利散射和米散射信号;TRay和TMie分别为瑞利散射和米散射信号在碘分子滤波器的中心透过率;R为分光镜反射率。TRay是瑞利光谱与碘分子滤波器光谱卷积的结果,不同高度、温度、压强不同,瑞利光谱也不同,首先采用标准大气模型的温度、压强剖面以及瑞利S6模型来计算TRay剖线,然后将HSRL数据计算出的温度结果再次待入到S6模型中计算TRay,如此反复多次,直到前后2次相差不超过1%。TMie可以通过直接测量激光在碘分子滤波器中心的透过率来获得。

其中:T(zc)和N(zc)分别为参考高度上的大气温度和密度;R为气体普适数;g(z)为重力加速度。参考高度上的大气密度和温度可由探空资料或者大气模型给出。利用式(2)求得瑞利散射信号后,可以根据式(3)和式(4)求得大气温度。

3测量结果与讨论

图3为利用HSRL测量上空温度剖面,测量累计时间为5min,(a)激光雷达信号从1.3km到9km,1.3km以下的信号由于几何因子和光子计数饱和的影响需要进行校正,本文没有给出。可以看出,HSRL信号和探空数据吻合较好,在9km以下探测误差小于3K,如(b)示。证明基于碘分子滤波器HSRL低空大气温度测量是可靠的。测量中发现,HSRL温度测量结果和探空数据存在着约7K的偏差,如图4(a)所示,HSRL数据减掉这个偏差后就得到图3校正后的结果。

分析认为,HSRL温度测量的误差主要来自于2方面:参考高度上的初始值;HSRL的测量值NRay。计算表明,参考高度密度初始值对温度结果影响不大,而温度初始值则影响较大,图4(b)给出了参考高度上温度初始值偏差为5K对激光雷达反演大气温度结果的影响,温度初始值变化时会引起HSRL温度测量结果的变化,但是在不同的高度由初始值变化引起的温度变化并不相同,较高处变化较大,较低处变化较小,这主要是由于低层大气密度较大,使低层的温度受参考温度变化的影响较小。

对于HSRL测量值NRay引起的偏差,原因在于HSRL系统本身,包括其频率的漂移、激光光谱的纯度和背景光的影响等。观测过程中,激光器的频率被锁定在碘分子吸收线谷底处,以便分离出大气瑞利散射信号。激光器频率的自由漂移和由于激光种子注入不完整引起的激光光谱纯度变化都会引起HSRL测量值NRay变化,使HSRL计算得到的温度值偏大。另外,背景光以及光电倍增管暗电流也是个不可忽视的问题。虽然在信号处理时将其减去,但如果将背景光等估计偏大或偏小,都可能引起HSRL反演大气温度结果的偏差。

poYBAGLGQ_iAbJIhAAChW7vmaRw065.png

图3(a)HSRL反演温度与气象局探空数据测量对比结果;(b)HSRL温度与气球温度偏差

pYYBAGLGQ_mAQ9d4AACyi76nwq0811.png

图4(a)HSRL数据整体偏差;(b)参考高度温度初始值选取引起的偏差

3结论

基于碘分子滤波器的HSRL系统去除了气溶胶信号的影响,从而可以利用瑞利散射信号强度测量低空大气温度。给出了利用该系统对流层大气温度测量结果,与当地气象局探空数据对比结果显示出较好的一致性,温度偏差在9km内小于3K,证明了系统对低层大气温度的探测能力。讨论了系统偏差和由于参考高度温度初始值选取引起的温度廓线的变化。利用瑞利散射强度测量温度精度主要受大气密度测量的影响,因此测量精度不是很高。进一步的研究中,系统将增加测量通道,系统具有2个碘分子滤波器,两者工作在不同的温度下,从而可以利用瑞利散射光谱线宽与温度的关系来更准确地测量大气温度。

莱森光学(深圳)有限公司是一家提供光机电一体化集成解决方案的高科技公司,我们专注于光谱传感和光电应用系统的研发、生产和销售。

审核编辑 黄昊宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 激光
    +关注

    关注

    19

    文章

    2759

    浏览量

    63490
收藏 人收藏

    评论

    相关推荐

    512线激光雷达还不是尽头,1024线激光雷达早在两年前已经推出?

    厂商纷纷推出512线的激光雷达。   不过其实在此之前,国内已经有多家激光雷达厂商推出300线、512线甚至是1024线的激光雷达。   洛伦兹科技   去年8月,洛伦兹科技推出E系列的ADAS
    的头像 发表于 01-22 06:58 5544次阅读
    512线<b class='flag-5'>激光雷达</b>还不是尽头,1024线<b class='flag-5'>激光雷达</b>早在两年前已经推出?

    激光雷达测量技术与应用

    激光雷达是一种利用激光束来探测和测量目标物体的雷达技术。它具有测量距离远、分辨率高、速度快、抗干
    的头像 发表于 12-15 11:03 527次阅读

    单线激光雷达和多线激光雷达区别

    单线激光雷达和多线激光雷达区别  单线激光雷达和多线激光雷达是两种常用的激光雷达技术。它们在激光
    的头像 发表于 12-07 15:48 2530次阅读

    一文通过AEC-Q102车规级芯片测试认证了解激光雷达核心技术及行业格局

    ,甚至前车的下方空间进行探测,为视觉系统提供更丰富的数据。 激光雷达被认为是 L3 级及以上自动驾驶必备传感器。激光雷达兼具测距远、角度分辨率优、受环境光照影响小的特点,且无需深度学习算法,可直接
    发表于 09-19 13:35

    激光雷达的基本构成 激光雷达由那些部分组成

    激光雷达的基本构成 激光雷达由那些部分组成 激光雷达(Lidar)是一种光学测距技术,可以通过向目标发送激光光束并接收其反射回来的光子来
    的头像 发表于 08-23 16:14 5331次阅读

    中红外光纤激光技术及应用

    2um-5um中红外激光有着自己独特的应用:该波段覆盖了几段大气窗口,使其可用于激光雷达大气通信、激光测距、超高
    的头像 发表于 07-30 11:45 2367次阅读
    中红外光纤<b class='flag-5'>激光</b>技术及应用

    了解汽车传感器——激光雷达

    、接收系统和信号处理系统。激光雷达系统的核心组件主要有激光发射器、扫描器及光学组件、光电探测器及接收IC,以及位置和导航器件等,可提供高分辨率的几何图像、距离图像、速度图像。 (2)工
    的头像 发表于 07-26 10:44 1108次阅读

    激光雷达的结构与种类

    一、激光雷达的结构 激光雷达的关键部件按照信号处理的信号链包括控制硬件DSP(数字信号处理器)、激光驱动、激光发射发光二极管、发射光学镜头、
    的头像 发表于 07-14 11:14 1414次阅读
    <b class='flag-5'>激光雷达</b>的结构与种类

    瑞识科技推出高功率纳秒级VCSEL激光雷达驱动板

    随着激光雷达(LiDAR)量产进入新周期,「拼性能、拼可靠、拼成本」成为所有行业玩家必须面临的三重大考。作为激光雷达核心光电组成部分的激光发射端,对激光雷达的测距能力、精度、视场角、
    的头像 发表于 07-12 11:24 2838次阅读
    瑞识科技推出高功率纳秒级VCSEL<b class='flag-5'>激光雷达</b>驱动板

    揭示新型主动光学传感器高光谱激光雷达辐射效应产生机制

    传感新品 【中国科学院空天信息创新研究院:揭示新型主动光学传感器高光谱激光雷达辐射效应产生机制】 近日,中国科学院空天信息创新研究院遥感科学国家重点实验室牛铮研究员团队在新型主动光学
    的头像 发表于 06-22 08:46 361次阅读

    2023年中国激光雷达行业市场现状及发展趋势分析

    激光雷达是一种通过探测远距离目标的散射光特性来获取目标相关信息的光学遥感技术。随着超短脉冲激光技术、高灵敏度的信号探测和高速数据采集系统的发展和应用,激光雷达以它的高
    的头像 发表于 06-05 17:38 970次阅读
    2023年中国<b class='flag-5'>激光雷达</b>行业市场现状及发展趋势分析

    可用于激光雷达的量子光学技术介绍

    针对激光雷达突破经典探测极限的需求,本文中研究了量子关联测量和HOM干涉测量激光雷达探测上的可能应用。
    发表于 05-11 14:49 313次阅读
    可用于<b class='flag-5'>激光雷达</b>的量子<b class='flag-5'>光学</b>技术介绍

    一文解析激光雷达结构

    激光雷达激光探测及测距系统,是通过发射激光束来探测目标位置、速度等特征量的雷达系统。按扫描维度,激光雷达可分为一维
    发表于 05-10 09:58 5943次阅读
    一文解析<b class='flag-5'>激光雷达</b>结构

    【虹科案例】虹科数字化仪在激光雷达大气研究中的应用

    01莱布尼茨研究所使用激光雷达进行大气研究图1:在Kühlungsborn的IAP办公室测试各种激光大气研究使用脉冲激光束通过
    的头像 发表于 05-09 10:18 271次阅读
    【虹科案例】虹科数字化仪在<b class='flag-5'>激光雷达</b><b class='flag-5'>大气</b>研究中的应用

    不只长距离和大视角,激光雷达的精度必须保障

    也开始慢慢被提上日程。   角分辨率   在一众固态激光雷达厂商追求更大视场角的过程中,往往不能忽视了角分辨率这一重要精度参数。随着如今激光雷达的扫描方式已经变得多种多样,也出现了数字
    的头像 发表于 05-07 09:30 2384次阅读
    不只长距离和大视角,<b class='flag-5'>激光雷达</b>的精度必须保障