0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

使用TensorBoard进行机器学习模型分析

星星科技指导员 来源:嵌入式计算设计 作者:Aekam Parmar 2022-07-01 09:44 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

随着新的神经网络模型定期出现,机器学习正在突飞猛进地发展。

这些模型针对特定数据集进行了训练,并在准确性和处理速度方面得到了证明。开发人员需要在部署之前评估 ML 模型并确保其符合预期的特定阈值和功能。有很多实验可以提高模型性能,在设计和训练模型时,可视化差异变得至关重要。TensorBoard 有助于可视化模型,使分析变得不那么复杂,因为当人们可以看到问题所在时,调试变得更容易。

训练 ML 模型的一般做法

一般的做法是使用预训练的模型并执行迁移学习以针对相似的数据集重新训练模型。在迁移学习期间,首先针对与正在解决的问题相似的问题对神经网络模型进行训练。然后将训练模型中的一个或多个层用于针对感兴趣问题训练的新模型。

大多数情况下,预训练模型采用二进制格式,这使得很难获取内部信息并立即开始处理。从组织的业务角度来看,拥有一些工具来深入了解模型以缩短项目交付时间是有意义的。

有几个可用的选项可以获取模型信息,例如层数和相关参数。模型摘要和模型图是基本选项。这些选项非常简单,考虑到几行实现,并提供了非常基本的细节,如层数、层类型和每层的输入/输出。

但是,模型摘要和模型图对于理解协议缓冲区形式的任何大型复杂模型的每一个细节并不是那么有效。在这样的场景下,使用TensorFlow提供的可视化工具TensorBoard就更有意义了。考虑到它提供的各种可视化选项,例如模型、标量和度量(训练和验证数据)、图像(来自数据集)、超参数调整等,它非常强大。

模型图以可视化自定义模型

当以协议缓冲区的形式接收自定义模型时,此选项特别有用,并且需要在对其进行任何修改或训练之前对其进行理解。如下图所示,在板上可视化了顺序 CNN 的概述。每个块代表一个单独的层,选择其中一个将在右上角打开一个窗口,其中包含输入和输出信息。

poYBAGK-Ug2AE2OmAAFyEMs94_4562.png

如果需要进一步的信息,关于各个块中的内容,可以简单地双击块,这将展开块并提供更多详细信息。请注意,一个块可以包含一个或多个可以逐层扩展的块。在选择任何特定操作后,它还将提供有关相关处理参数的更多信息。

pYYBAGK-UhWALQ-jAAL75d-oP3Q196.png

用于分析模型训练和验证的标量和指标

机器学习的第二个重要方面是分析给定模型的训练和验证。从准确性和速度的角度来看,性能对于使其适用于现实生活中的实际应用非常重要。在下图中,可以看出模型的准确性随着 epochs/迭代次数的增加而提高。如果训练和测试验证不达标,则表明某些事情不正确。这可能是欠拟合或过拟合的情况,可以通过修改层/参数或改进数据集或两者兼而有之来纠正。

poYBAGK-UhyAAV22AAInyzJOjHk378.png

图像数据以可视化数据集中的图像

顾名思义,它有助于可视化图像。它不仅限于可视化数据集中的图像,它还以图像的形式显示混淆矩阵。该矩阵表示检测各个类别的对象的准确性。如下图所示,模特将大衣与套头衫混淆了。为了克服这种情况,建议改进特定类别的数据集,以将可区分的特征提供给模型,以便更好地学习并提高准确性。

pYYBAGK-UiaAd5_xAAKM21-zJYU167.png

超参数调整以实现所需的模型精度

模型的准确性取决于输入数据集、层数和相关参数。在大多数情况下,在初始训练期间,准确度永远不会达到预期的准确度,除了数据集之外,还需要考虑层数、层类型、相关参数。此过程称为超参数调整。

在这个过程中,提供了一系列超参数供模型选择,并结合这些参数运行模型。每个组合的准确性都记录在板上并可视化。它纠正了为超参数的每个可能组合手动训练模型所消耗的精力和时间。

pYYBAGK-Ui6AbK_UAAJ1G3xazbE490.png

分析模型处理速度的分析工具

除了准确性之外,处理速度对于任何模型来说都是同样重要的方面。有必要分析各个块消耗的处理时间,以及是否可以通过一些修改来减少它。Profiling Tool 提供了每个操作在不同时期的时间消耗的图形表示。通过这种可视化,人们可以很容易地查明需要更多时间的操作。一些已知的开销可能是调整输入的大小、从 Python 转换模型代码或在 CPU 而非 GPU 中运行代码。照顾好这些事情将有助于实现最佳性能。

poYBAGK-UjeAbOQSAANTMmENdj0193.png

poYBAGK-Uj6ADMFvAAMKe0tSwRg001.png

总体而言,TensorBoard 是帮助开发和培训过程的绝佳工具。Scalar and Metrics、Image Data 和 Hyperparameter 调优的数据有助于提高准确性,而 profiling 工具有助于提高处理速度。TensorBoard 还有助于减少所涉及的调试时间,否则这肯定是一个很大的时间框架。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • cpu
    cpu
    +关注

    关注

    68

    文章

    11218

    浏览量

    222954
  • gpu
    gpu
    +关注

    关注

    28

    文章

    5099

    浏览量

    134464
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136236
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    XKCON祥控输煤皮带智能机器人巡检系统对监测数据进行挖掘分析

    XKCON祥控输煤皮带智能机器人巡检系统通过智能机器人在皮带运行过程中对皮带的运行状态和环境状况进行实时检测,在应用过程中,不但提升了巡视周期频次,还通过大数据分析和深度
    的头像 发表于 09-15 11:22 415次阅读
    XKCON祥控输煤皮带智能<b class='flag-5'>机器</b>人巡检系统对监测数据<b class='flag-5'>进行</b>挖掘<b class='flag-5'>分析</b>

    知识分享 | 使用MXAM进行AUTOSAR模型的静态分析:Embedded Coder与TargetLink模型

    知识分享在知识分享栏目中,我们会定期与读者分享来自MES模赛思的基于模型的软件开发相关Know-How干货,关注公众号,随时掌握基于模型的软件设计的技术知识。使用MXAM进行AUTOSAR模型
    的头像 发表于 08-27 10:04 494次阅读
    知识分享 | 使用MXAM<b class='flag-5'>进行</b>AUTOSAR<b class='flag-5'>模型</b>的静态<b class='flag-5'>分析</b>:Embedded Coder与TargetLink<b class='flag-5'>模型</b>

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是一家边缘AI 公司,致力于让机器 学习模型更易于使用。它创建的模型比竞争对手的框架小10 倍,速度也快10 倍,甚至可以在最先进的边缘设备上
    发表于 07-31 11:38

    模型在半导体行业的应用可行性分析

    的应用,比如使用机器学习分析数据,提升良率。 这一些大模型是否真的有帮助 能够在解决工程师的知识断层问题 本人纯小白,不知道如何涉足这方面 应该问什么大
    发表于 06-24 15:10

    边缘计算中的机器学习:基于 Linux 系统的实时推理模型部署与工业集成!

    你好,旅行者!欢迎来到Medium的这一角落。在本文中,我们将把一个机器学习模型(神经网络)部署到边缘设备上,利用从ModbusTCP寄存器获取的实时数据来预测一台复古音频放大器的当前健康状况。你将
    的头像 发表于 06-11 17:22 783次阅读
    边缘计算中的<b class='flag-5'>机器</b><b class='flag-5'>学习</b>:基于 Linux 系统的实时推理<b class='flag-5'>模型</b>部署与工业集成!

    使用MATLAB进行无监督学习

    无监督学习是一种根据未标注数据进行推断的机器学习方法。无监督学习旨在识别数据中隐藏的模式和关系,无需任何监督或关于结果的先验知识。
    的头像 发表于 05-16 14:48 1178次阅读
    使用MATLAB<b class='flag-5'>进行</b>无监督<b class='flag-5'>学习</b>

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器学习
    的头像 发表于 02-13 09:39 624次阅读

    【「基于大模型的RAG应用开发与优化」阅读体验】+大模型微调技术解读

    今天学习<基于大模型的RAG应用开发与优化>这本书。大模型微调是深度学习领域中的一项关键技术,它指的是在已经预训练好的大型深度学习
    发表于 01-14 16:51

    传统机器学习方法和应用指导

    用于开发生物学数据的机器学习方法。尽管深度学习(一般指神经网络算法)是一个强大的工具,目前也非常流行,但它的应用领域仍然有限。与深度学习相比,传统方法在给定问题上的开发和测试速度更快。
    的头像 发表于 12-30 09:16 1982次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    【「具身智能机器人系统」阅读体验】2.具身智能机器人大模型

    。 多模态融合的创新与突破 机器人控制技术的另一个重要突破在于多模态大模型的应用。相比于仅通过文字进行人机交互的传统方法,现代机器人能够融合视觉、声音、定位等多模态输入信息,为任务执行
    发表于 12-29 23:04

    【「具身智能机器人系统」阅读体验】1.全书概览与第一章学习

    非常感谢电子发烧友提供的这次书籍测评活动!最近,我一直在学习模型和人工智能的相关知识,深刻体会到机器人技术是一个极具潜力的未来方向,甚至可以说是推动时代变革的重要力量。能参与这次活动并有机会深入
    发表于 12-27 14:50

    《具身智能机器人系统》第7-9章阅读心得之具身智能机器人与大模型

    研读《具身智能机器人系统》第7-9章,我被书中对大模型机器人技术融合的深入分析所吸引。第7章详细阐述了ChatGPT for Robotics的核心技术创新:它摒弃了传统的分层控制架
    发表于 12-24 15:03

    【「大模型启示录」阅读体验】营销领域大模型的应用

    今天跟随「大模型启示录」这本书,学习在营销领域应用大模型。 大模型通过分析大量的消费者数据,包括购买历史、浏览记录、社交媒体互动等,能够识别
    发表于 12-24 12:48

    zeta在机器学习中的应用 zeta的优缺点分析

    在探讨ZETA在机器学习中的应用以及ZETA的优缺点时,需要明确的是,ZETA一词在不同领域可能有不同的含义和应用。以下是根据不同领域的ZETA进行分析: 一、ZETA在
    的头像 发表于 12-20 09:11 1627次阅读

    cmp在机器学习中的作用 如何使用cmp进行数据对比

    机器学习领域,"cmp"这个术语可能并不是一个常见的术语,它可能是指"比较"(comparison)的缩写。 比较在机器学习中的作用 模型
    的头像 发表于 12-17 09:35 1324次阅读