0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电磁学的重要性 电磁波的主要参数

罗森伯格汽车电子 来源:罗森伯格汽车电子 作者:周同昌 2022-06-10 16:42 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

前 言

离上一次在“罗森伯格汽车电子”公众号发表文章,中间已经过去了两年多。时光飞逝,尽全力参阅了多本国外电磁学著作,未曾有一丝懈怠。今日携新的连载《罗森伯格陪您聊电和磁》归来,以感谢新老朋友,对于罗森伯格的认可与支持。

之所以决定写电磁学领域的文章,皆因为电磁学作为一门玄学,本身对于数学的要求比较高,且看不见摸不着,要想入门,实属不易。自己苦学十多年,有幸在电磁学的海洋中,捡到了几块贝壳,将自己的心得体会,与整个行业分享,以期可以对大家有一些帮助。

电 磁 学 的 重 要 性

电磁学可以和微电子、微波通讯、甚至光学息息相关。要想学好电磁学,相对于用高等数学来做严谨的高阶偏微分方程求解,更重要的是去建立物理层面的直观理解。电磁学其实研究得是不同频率的电磁波,在不同媒介中是如何传播的。而我们为什么需要学好它,我想其中的一个主要原因是,我们要使我们设计的产品,满足电磁兼容的要求。毫无疑问,任何一个电子产品,都有对应的电磁兼容要求。在应用场景中,它要么是“骚扰者”,要么是“受害者”。当它作为“骚扰者”时,它主要是通过电磁辐射或者传导干扰,去影响其他设备的正常工作。当它作为“受害者”时,它主要因为其他设备的干扰而产生了性能降低,甚至无法正常工作。较差的电磁兼容设计,主要是因为电路板设计不够优化而引起的,当然除此之外,线束本身除了可以输入/输出信号外,也有可能扮演良好的辐射天线/接收天线,从而引起电磁干扰问题。 随着微电子技术的日新月异发展,数字电路的工作频率越来越高,已经和微波通讯频谱出现了重叠。因此研发工程师们需要了解电磁场、传输线、信号完整性等电磁学知识,来帮助他们确保产品能够满足电磁兼容要求。

电 磁 波 的 主 要 参 数

如大家所知,我们所熟悉的各种光,本身也属于电磁波,但是光和我们熟悉的射频信号,差异缺很大,这背后的原因是什么呢?答案是频率。

光有波长、周期、光子能(光在该频率下能传输的最小能量)三种参数,如下所示:

70abba54-ddae-11ec-ba43-dac502259ad0.png

广义电磁波也具有上述相同的三种参数,在不同的应用下,不同的参数将会起着主导作用,譬如:

1) 信号传输线:信号的上升沿时间,与信号沿着传输线的传输时间的对比;

2) 天线:信号的波长和天线物理长度的对比;

3) 电路:信号的频率和电路的共振频率对比;

4) X射线检验:光子的能量与原子中电子轨道跃迁能量之间的关系。

70bec504-ddae-11ec-ba43-dac502259ad0.jpg

电 长 度

电长度是一个非常重要的参数,有助于帮助我们理解电磁场,它是一个无量纲,表示得是导线物理长度和导线所载信号波长的比值:

70daeb44-ddae-11ec-ba43-dac502259ad0.png

如果天线长度为1米,则发射频率1KHz信号时,对应的电长度为,因此我们可以认为这个时候,天线呈现电“短”性。如果信号频率为100MHz,则电长度为0.3,我们可以认为天线具有了电“长”性。

一般我们认为电长度小于1/10时,我们可以按照传统的电路理论来进行处理,而无需考虑微波效应,反之则需要考虑。

模 拟 信 号 与 数 字 信 号

模拟信号是连续可变的信号,比如音频信号,模拟信号往往占据一定的带宽,可以使用傅里叶分解,将其分解为一系列正弦分量的叠加。电话中,我们人类的声音信号占据的频带为100Hz~4000Hz。

数字信号是一系列的0和1脉冲电平组成,若对一个完美的脉冲方波进行傅里叶分解,可得出无穷组正弦波分量的叠加,但实际中,我们不可能获得完美的方波,每一个脉冲都有上升沿和下降沿,而上升沿和下降沿中包含了大量的频谱成分,在传输线和信号完整性领域,对于EMC设计,具有非常重要的作用。

微 波 技 术

当频率到达微波区间时,我们将不能再以传统的电路解析方法,去解读我们的电路,我们必须使用传输线理论,去研究信号在回路中的反射和振荡。比如,如果一对传输线,物理长度是波长的1/4,则如果我们将传输线的远端短接,则输入端的阻抗将会是无穷大,变为开路,而这就是高频的魅力所在。

频率越高,电路将越容易向外辐射能量,从而转变为天线。同时,因为没有任何元器件是完美的,都具有寄生参数,则在高频时,电感可以呈现容性,电容可以呈现感性。

使用传输线理论时,我们也不能再把电流理解为传输线中的水流,因为此时传输线只是起到束缚电磁场边界的作用,而真正的电磁场能量是在传输线之间的绝缘介质中传播的。

当我们看待从发电厂到我们家里的50Hz三相输电回路时,电路中的电子并没有从发电厂跑到我们家里来,从而带来能量,相反,电子只是来回振荡,以将能量以电磁场的形式,传递到我们家里来。虽然这个不太好理解,但是我们想象一下,发电厂是一堆苹果,所有的电子排成一排,像搬运工人一样,从发电厂排到我们家里,然后一个人拿起苹果,传递给下一个人,再依次传递,直到苹果传递到我们家里,这就是我们电能传输的奥秘。

本周我们先聊到这,若大家对电磁学感兴趣,欢迎关注罗森伯格视频号,也欢迎您关注周同昌老师个人视频号“周同昌陪您读电磁学”。 我们下期再见。

原文标题:罗森伯格陪您聊电和磁(1)

文章出处:【微信公众号:罗森伯格汽车电子】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 模拟信号
    +关注

    关注

    8

    文章

    1220

    浏览量

    54403
  • 电磁波
    +关注

    关注

    21

    文章

    1499

    浏览量

    55391
  • 电磁学
    +关注

    关注

    1

    文章

    110

    浏览量

    15199

原文标题:罗森伯格陪您聊电和磁(1)

文章出处:【微信号:Rosenberger_Auto,微信公众号:罗森伯格汽车电子】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    聚焦电磁测试领域前沿!Aigtek安泰电子亮相第九届电磁场问题和应用国际会议!

    会议回顾2025年10月10-12日,2025第九届电磁场问题和应用国际会议于哈尔滨圆满召开。本次会议就应用电磁学中的逆问题、非线性电磁学电磁器件及其应用、无损
    的头像 发表于 10-16 18:36 349次阅读
    聚焦<b class='flag-5'>电磁</b>测试领域前沿!Aigtek安泰电子亮相第九届<b class='flag-5'>电磁</b>场问题和应用国际会议!

    电磁流量计的主要参数及调整方法

    在工业流体测量领域,电磁流量计凭借高精度、高稳定性的优势广泛应用,而掌握电磁流量计的主要参数及调整方法,是确保其精准运行、发挥核心价值的关键。作为基于电磁感应原理工作的流量测量设备,其
    的头像 发表于 08-30 08:56 1975次阅读

    Simcenter STAR-CCM+电磁学:多物理场环境下快速、可扩展的电磁分析工具

    于2D和3D快速、可扩展的求解器可用于分析工业规模的问题当今电磁学面临的挑战电气化是工业创新的主要支柱之一。在这一领域,现代设计和优化通常需要采用多学科方法。例如,开
    的头像 发表于 07-16 10:51 530次阅读
    Simcenter STAR-CCM+<b class='flag-5'>电磁学</b>:多物理场环境下快速、可扩展的<b class='flag-5'>电磁</b>分析工具

    《开关电源高频电磁波干扰概论》

    本帖最后由 嗳唱歌de图图 于 2025-2-26 15:19 编辑 《开关电源高频电磁波干扰概论》解析(一) 虽然关于 EMI 的书和资料非常多,但基本都是针对设备级的,针对开关电源的很少
    发表于 02-26 15:11

    如何进行电磁干扰处理

    的评估等。 二、电磁干扰原理 电磁干扰的基本原理是利用电磁波对目标设备产生干扰,从而影响其正常工作。电磁波可以通过多种方式传播,如空间辐射、导线传导等。当
    的头像 发表于 02-20 10:28 1183次阅读

    电磁波谱的定义及应用 电磁波谱在通信中的作用

    极短波的伽马射线。这些电磁波按照波长或频率、波数、能量的大小顺序进行排列,形成了电磁波谱。 电磁波谱的分类主要基于波长或频率的不同,常见的分类包括: 无线电波 :频率低于30 GHz,
    的头像 发表于 02-01 10:00 3220次阅读

    76岁解开电磁学哥德巴赫猜想——“中国微波之父”林为干

    、中山大学任教。1957年调至成都电讯工程学院(现电子科技大学),曾任院长助理、副院长等职。对我国电磁学、微波理论和技术的发展作出杰出贡献,主要成就涉及闭合场理论、开放
    的头像 发表于 01-22 17:33 1445次阅读
    76岁解开<b class='flag-5'>电磁学</b>哥德巴赫猜想——“中国微波之父”林为干

    如何进行电磁波谱的实验测量

    进行电磁波谱的实验测量,通常需要借助专业的光谱仪器和遵循一定的实验步骤。以下是一个基本的实验指南: 一、实验器材与材料 光谱仪器 :这是测量电磁波谱的核心设备,能够分析和记录不同波长的电磁波
    的头像 发表于 01-20 17:32 1267次阅读

    电磁波谱与环境监测的关系

    电磁波谱的分类基于波长或频率的不同。每种类型的电磁波都有其独特的特性和应用。例如,无线电波波长较长,可以穿透大气层,适合用于通信和遥感;而伽马射线波长极短,能量极高,常用于医学成像和放射物质的探测。 环境监测中的
    的头像 发表于 01-20 17:21 1284次阅读

    影响电磁波谱的外部因素

    电磁波谱是指不同频率和波长的电磁波的集合,它们在自然界和人造设备中广泛存在。电磁波谱包括从低频的无线电波到高频的伽马射线等多种类型的电磁波。影响电磁
    的头像 发表于 01-20 16:52 1574次阅读

    电磁波谱的分类及实例

    电磁波谱是指电磁波按照波长或频率的不同而形成的一系列范围。电磁波谱包括从极低频率的无线电波到极高频率的伽马射线。以下是电磁波谱的分类及一些实例的介绍: 1. 无线电波(Radio Wa
    的头像 发表于 01-20 16:50 4093次阅读

    如何利用电磁波谱进行遥感

    利用电磁波谱进行遥感的过程,主要依赖于电磁波与地球表面物体之间的相互作用。以下是利用电磁波谱进行遥感的介绍: 一、电磁波谱的选择 可见光 :
    的头像 发表于 01-20 16:48 1564次阅读

    可见光在电磁波谱中的位置

    电磁波谱是一个连续的波谱,包含了从低频到高频的各种电磁波。可见光作为电磁波谱中的一部分,对人类的视觉感知至关重要。 一、电磁波谱概述
    的头像 发表于 01-20 16:38 5082次阅读

    如何理解电磁波谱的基本概念

    电磁波谱是物理学中一个重要的概念,它涵盖了从极低频率到极高频率的所有电磁波。这些的形式传播,不需要介质,可以在真空中传播。
    的头像 发表于 01-20 16:32 2348次阅读

    不同波长的电磁波谱解析

    电磁波谱是物理学中的一个基本概念,它描述了所有电磁辐射按照波长或频率的排列。电磁波是能量的一种形式,它们以的形式传播,不需要介质。从长波长的无线电波到短波长的伽马射线,
    的头像 发表于 01-20 16:30 3970次阅读